
Using Using ArcObjectsArcObjects in in
ArcReaderArcReader
Mark Mark CederholmCederholm

Unisource Energy ServicesUnisource Energy Services

Why ArcReader?Why ArcReader?

Free deployment for field applicationsFree deployment for field applications
Fully disconnected apps: no need for Fully disconnected apps: no need for
ArcGISArcGIS Server or MobileServer or Mobile
ArcMapArcMap--quality cartographyquality cartography
But:But: outout--ofof--thethe--box functionality is limitedbox functionality is limited
Workaround:Workaround: create a custom object that create a custom object that
resides in the map and can be persisted to resides in the map and can be persisted to
the PMFthe PMF

A custom ArcReader object:A custom ArcReader object:

Create a COM object that implements Create a COM object that implements
IPersistVariantIPersistVariant
In In ArcMapArcMap, assign the , assign the PageLayoutPageLayout as a as a
member variable which is member variable which is savedsaved and and
loadedloaded in in IPersistVariantIPersistVariant
Attach the object to some point of Attach the object to some point of
persistence in the map, such as a custom persistence in the map, such as a custom
layer or the layer or the CustomPropertyCustomProperty of a graphic of a graphic
elementelement
Problem:Problem: how to communicate with the how to communicate with the
custom object?custom object?

Application architectureApplication architecture
The ArcReader control resides
in the main application

The actual map resides
in a separate process
called ArcReaderHost

The two processes can communicate
via window messages or some other
form of IPC

Why window messages?Why window messages?

Simple, fast, effectiveSimple, fast, effective
SerializableSerializable data such as strings may be data such as strings may be
sent sent synchronouslysynchronously using using SendMessageSendMessage
Integer command codes may be sent Integer command codes may be sent
asynchronouslyasynchronously using using PostMessagePostMessage
Strategy:Strategy: first send the data to be cached first send the data to be cached
by the target, then send the command by the target, then send the command
code for processingcode for processing

ArcObjectsArcObjects functionality in functionality in
ArcReaderArcReader

You can manipulate just about any objects You can manipulate just about any objects
associated with the associated with the PageLayoutPageLayout
Many fineMany fine--grained grained ArcObjectsArcObjects are availableare available
Many coarseMany coarse--grained objects are not grained objects are not
available or will not workavailable or will not work
Experimentation is the key to uncovering Experimentation is the key to uncovering
capabilitiescapabilities

Some things you can doSome things you can do

GPS supportGPS support
Projections and transformationsProjections and transformations
Topological operations (union, intersect, Topological operations (union, intersect,
etc.)etc.)
Network tracing through Network tracing through ForwardStarForwardStar
Simple, nonSimple, non--versioned feature edits versioned feature edits
((nono edit operations)edit operations)
Custom plotting and PDF exportCustom plotting and PDF export

Demo: a sample applicationDemo: a sample application

Message handling, part 1Message handling, part 1

<StructLayout(LayoutKind.Sequential)> _
Private Structure COPYDATASTRUCT

Public dwData As IntPtr
Public cbData As Integer
Public lpData As IntPtr

End Structure

Private Const WM_COPYDATA As Integer = &H4A
Private Const WM_USER As Integer = &H400
Private Const WS_POPUP As Integer = &H80000000

<DllImport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
Private Shared Function FindWindow(_
ByVal lpClassName As String, _
ByVal lpWindowName As String) As IntPtr

End Function

Message handling, part 2Message handling, part 2

<DllImport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
Private Shared Function SendMessage(_
ByVal hWnd As IntPtr, _
ByVal Msg As Integer, _
ByVal wParam As Integer, _
ByRef lParam As COPYDATASTRUCT) As Integer

End Function

<DllImport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
Private Shared Function PostMessage(_
ByVal hWnd As IntPtr, _
ByVal Msg As UInteger, _
ByVal wParam As IntPtr, _
ByVal lParam As IntPtr) As Boolean

End Function

The Communicator classThe Communicator class

Public Interface ICommunicator
Sub Startup(ByVal Name As String)
Function SetTargetName(ByVal Name As String) As Boolean
Function SendData(ByVal DataString As String) As Boolean
Function SendCommand(ByVal CommandCode As Integer) As Boolean
Sub Shutdown()

End Interface

Public Interface ICommunicatorEvents
Event DataReceived(ByVal DataString As String)
Event CommandReceived(ByVal CommandCode As Integer)

End Interface

Public Class Communicator
Inherits NativeWindow
Implements ICommunicator
Implements ICommunicatorEvents
. . .

End Class

Creating, finding, and destroying a windowCreating, finding, and destroying a window
Public Sub Startup(ByVal Name As String) . . .

Dim cp As New CreateParams
cp.X = 0
cp.Y = 0
cp.Width = 0
cp.Height = 0
cp.Caption = Name
cp.Style = WS_POPUP
Me.CreateHandle(cp)
. . .

Public Function SetTargetName(ByVal Name As String) As Boolean . . .
Dim hWnd As IntPtr
. . .
hWnd = FindWindow(vbNullString, Name)
. . .

Public Sub Shutdown() . . .
Me.DestroyHandle()

Sending messagesSending messages

Public Function SendData(ByVal DataString As String) As Boolean . . .
. . .
' Serialize data
. . .
iResult = SendMessage(m_hTargetWnd, WM_COPYDATA, 0, cds)
Return True

End Function

Public Function SendCommand(ByVal Code As Integer) As Boolean . . .
. . .
Return PostMessage(m_hTargetWnd, WM_USER, _

New IntPtr(0), New IntPtr(Code))
End Function

Receiving messagesReceiving messages

Protected Overrides Sub WndProc(ByRef m as Message)
If m.Msg = WM_USER Then

RaiseEvent CommandReceived(m.LParam.ToInt32)
ElseIf m.Msg = WM_COPYDATA Then

. . .
' Deserialize data
. . .
RaiseEvent DataReceived(sData)

End If
MyBase.WndProc(m)

End Sub

Serializing dataSerializing data
Dim b As New BinaryFormatter
Dim stream As New MemoryStream
Dim iDataSize, iResult As Integer
Dim bytes() As Byte
Dim pData As IntPtr
Dim cds As COPYDATASTRUCT

b.Serialize(stream, DataString)
stream.Flush()
iDataSize = stream.Length
ReDim bytes(iDataSize - 1)
stream.Seek(0, SeekOrigin.Begin)
stream.Read(bytes, 0, iDataSize)
stream.Close()
pData = Marshal.AllocCoTaskMem(iDataSize)
Marshal.Copy(bytes, 0, pData, iDataSize)
cds.lpData = pData
cds.cbData = iDataSize
cds.dwData = New IntPtr(100)

DeserializingDeserializing datadata

Dim cds As New COPYDATASTRUCT
Dim cdsType As Type
Dim iDataSize As Integer
Dim bytes() As Byte
Dim b As New BinaryFormatter
Dim stream As MemoryStream
Dim sData As String

cdsType = cds.GetType
cds = CType(m.GetLParam(cdsType), COPYDATASTRUCT)
iDataSize = cds.cbData
ReDim bytes(iDataSize)
Marshal.Copy(cds.lpData, bytes, 0, iDataSize)
stream = New MemoryStream(bytes)
sData = b.Deserialize(stream)

TestHostClassTestHostClass

Public Interface ITestHost
Function Init(ByVal pPageLayout As IPageLayout) As Boolean
Sub SendCommand(ByVal sData As String)

End Interface

<ComClass(TestHostClass.ClassId, TestHostClass.InterfaceId, _
TestHostClass.EventsId), ProgId("TestHost.TestHostClass")> _
Public Class TestHostClass

Implements ITestHost
Implements IPersistVariant
. . .
Private m_pPageLayout As IPageLayout
Private WithEvents m_Communicator As Communicator
Private m_sData As String
. . .

End Class

Initializing (in Initializing (in ArcMapArcMap))

Public Function Init(ByVal pPageLayout As IPageLayout) As Boolean . . .
Dim pAV As IActiveView = pPageLayout
Dim pMap As IMap = pAV.FocusMap
Dim pGC As IGraphicsContainer = pPageLayout
Dim pFrame As IFrameElement = pGC.FindFrame(pMap)
Dim pProps As IElementProperties = pFrame
Dim oProp As Object = pProps.CustomProperty
If Not oProp Is Nothing Then

Return False
End If
pProps.CustomProperty = Me
m_pPageLayout = pPageLayout
. . .
Return True

End Function

Implementing Implementing IPersistVariantIPersistVariant

Public Sub Load(ByVal Stream As IVariantStream) . . .
Dim pPageLayout As IPageLayout = Nothing
Dim bSuccess As Boolean = True
Try

pPageLayout = Stream.Read
Marshal.ReleaseComObject(Stream)

Catch ex As Exception
bSuccess = False

End Try
If bSuccess Then

m_pPageLayout = pPageLayout
End If

End Sub

Public Sub Save(ByVal Stream As IVariantStream) . . .
Stream.Write(m_pPageLayout)
Marshal.ReleaseComObject(Stream)

End Sub

Sending and receiving commandsSending and receiving commands

Public Sub SendCommand(ByVal sData As String) . . .
Dim bResult As Boolean = m_Communicator.SendData(sData)
bResult = m_Communicator.SendCommand(CommandCode)

End Sub

Private Sub m_Communicator_DataReceived(ByVal sData As String) . . .
m_sData = sData

End Sub

Private Sub m_Communicator_CodeReceived(ByVal Code As Integer) . . .
. . .
' Process command
. . .

End Sub

AddTestHost.pyAddTestHost.py

def AddTestHost():
. . .
Get application and install TestHost
pApp = GetApp()
pFact = CType(pApp, esriFramework.IObjectFactory)
pDoc = pApp.Document
pMxDoc = CType(pDoc, esriArcMapUI.IMxDocument)
pLayout = pMxDoc.PageLayout
pUnk = pFact.Create(CLSID(TestHost.TestHostClass))
pTestHost = CType(pUnk, TestHost.ITestHost)
bResult = pTestHost.Init(pLayout)
print bResult

Main Application (Main Application (TestAppTestApp))

' Be sure to reference both PublisherControls and AxPublisherControls
Imports ESRI.ArcGIS.PublisherControls
Imports TestComm

Public Class TestMain
. . .
Private WithEvents m_Communicator As Communicator
Private WithEvents m_ARControl As ArcReaderControl
. . .

End Class

Set to single instance
to avoid conflicts

TIP: Creating the ArcReader control programmatically avoids
consuming a Publisher license at design time

Create the ArcReader control…Create the ArcReader control…

Private Sub TestMain_Load . . .

Dim AxArcReaderControl1 As AxArcReaderControl
Dim Init As System.ComponentModel.ISupportInitialize

AxArcReaderControl1 = New AxArcReaderControl
Init = AxArcReaderControl1
Init.BeginInit()
AxArcReaderControl1.Location = PictureBox1.Location
AxArcReaderControl1.Size = PictureBox1.Size
AxArcReaderControl1.Name = "AxArcReaderControl1"
AxArcReaderControl1.Dock = DockStyle.Fill
ToolStripContainer1.ContentPanel.Controls.Add(AxArcReaderControl1)
Init.EndInit()
AxArcReaderControl1.BringToFront()
PictureBox1.Visible = False
m_ARControl = AxArcReaderControl1.GetOcx

…… and establish communicationand establish communication

Dim pARControl As IARControl = m_ARControl
m_Communicator = New Communicator
m_Communicator.Startup(AppName)
pARControl.LoadDocument(DefaultPMF)
. . .
Dim bResult As Boolean = m_Communicator.SetTargetName(HostName)
If Not bResult Then

MsgBox("Could not find host communicator." . . .
. . .

End If
SendCommand("host:target=" & AppName)

Tool actions are started by the main app…Tool actions are started by the main app…

Private Sub m_ARControl_OnMouseDown(ByVal button As Integer . . .
Dim sCommand As String = ""
If m_ToolAction = ToolAction.None Then

Exit Sub
End If
If button = 1 Then

Select Case m_ToolAction
Case ToolAction.RedLine

sCommand = "markup:add_line"
. . .
End Select
SendCommand(sCommand)

End If
End Sub

…… and finished by the host classand finished by the host class

Private Function CaptureShape(ByVal opt As FeatureType) As IGeometry
Dim pRubberBand As IRubberBand = Nothing
Dim pShape As IGeometry = Nothing
If opt = FeatureType.Point Then

pRubberBand = New RubberPointClass
ElseIf opt = FeatureType.Line Then

pRubberBand = New RubberLineClass
ElseIf opt = FeatureType.Poly Then

pRubberBand = New RubberPolygonClass
End If
pShape = pRubberBand.TrackNew(m_pScreenDisp, Nothing)
. . .

Debugging the applicationDebugging the application
Attach the Attach the ArcReaderHostArcReaderHost process:process:

Or, debug the host class in ArcReader, using a Or, debug the host class in ArcReader, using a
separate testing app to send commandsseparate testing app to send commands

Some final tips:Some final tips:

While handling a synchronous window message, While handling a synchronous window message,
do as little as possible do as little as possible –– avoid window operationsavoid window operations
IMap.UpdateContentsIMap.UpdateContents will not update the TOC in will not update the TOC in
the ArcReader control the ArcReader control –– adding and removing adding and removing
layers will lead to a disconnectlayers will lead to a disconnect
Avoid intensive use of fineAvoid intensive use of fine--grained grained ArcObjectsArcObjects in in
.NET.NET
For best performance, use C++ to create coarseFor best performance, use C++ to create coarse--
grained COM objectsgrained COM objects

Questions?Questions?

Mark Mark CederholmCederholm
mcederholm@uesaz.commcederholm@uesaz.com
This presentation and sample code This presentation and sample code
may be downloaded at:may be downloaded at:

http://http://www.pierssen.com/arcgis/misc.htmwww.pierssen.com/arcgis/misc.htm

