Using ArcObjects In
ArcReader

Mark Cederholm
Unisource Energy Services

Why ArcReader?

Free deployment for field applications

Fully disconnected apps: no need for
ArcGIS Server or Mobile
ArcMap-quality cartography
out-of-the-box functionality is limited
create a custom object that
resides in the map and can be persisted to
the PMF

A custom ArcReader object:

Create a COM object that implements
IPersistVariant

In ArcMap, assign the PagelLayout as a
member variable which Is saved and
loaded 1N IPersistVVariant

Attach the object to some point of
persistence In the map, such as a custom
layer or the CustomProperty of a graphic
element

Problem: how to communicate with the
custom object?

Application architecture

The ArcReader control resides The actual map resides

in the main application in a separate process
called ArcReaderHost

3}

3}

3}

a
a
a
a

The two processes can communicate
via window messages or some other
form of IPC

Why window messages?

Simple, fast, effective

Serializable data such as strings may be
sent synchronously using SendMessage

Integer command codes may be sent
asynchronously using PostMessage

Strategy: first send the data to be cached
by the target, then send the command
code for processing

ArcObjects functionality in
ArcReader

You can manipulate just about any objects
assoclated with the Pagelayout

Many fine-grained ArcObjects are available

Many coarse-grained objects are not
avallable or will not work

Experimentation is the key to uncovering
capabilities

Some things you can do

GPS support
Projections and transformations

Topological operations (union, Intersect,
etc.)

Network tracing through ForwardStar
Simple, non-versioned feature edits

(= edit operations)

Custom plotting and PDF export

Demo: a sample application

£z Test Application

@~ ~-E

O oOmE 0o
K K EHER R

&

Message handling, part 1

<StructLayout(LayoutKind.Sequential)>
Private Structure

Public dwData As IntPtr

Public cbData As Integer

Public IpData As IntPtr
End Structure

Private Const As Integer = &H4A
Private Const As Integer = &H400
Private Const As Integer = &H80000000

<Dlllmport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
Private Shared Function (_

ByVal IpClassName As String,

ByVal IpWindowName As String) As IntPtr

End Function

Message handling, part 2

<Dlllmport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
Private Shared Function (_

ByVal hwnd As IntPtr,

ByVal Msg As Integer, _

ByVal wParam As Integer, _

ByRef IParam As) As Integer

End Function

<Dllimport("user32.dll", SetLastError:=True, CharSet:=CharSet.Auto)> _
Private Shared Function (_

ByVal hWnd As IntPtr,

ByVal Msg As Ulnteger,

ByVal wParam As IntPtr,

ByVal IParam As IntPtr) As Boolean

End Function

The Communicator class

Public Interface ICommunicator
Sub Startup(ByVal Name As String)
Function SetTargetName(ByVal Name As String) As Boolean
Function SendData(ByVal DataString As String) As Boolean
Function SendCommand(ByVal CommandCode As Integer) As Boolean
Sub Shutdown()
End Interface

Public Interface ICommunicatorEvents

Event DataReceived(ByVal DataString As String)

Event CommandReceived(ByVal CommandCode As Integer)
End Interface

Public Class Communicator
Inherits NativeWindow
Implements ICommunicator
Implements ICommunicatorEvents

End Class

Creating, finding, and destroying a window

Public Sub Startup(ByVal Name As String) . . .
Dim cp As New CreateParams
cp.X=0
cp.Y =0
cp.Width = 0O
cp.Height = 0
cp.Caption = Name
cp.Style =
Me.CreateHandle(cp)

Public Function SetTargetName(ByVal Name As String) As Boolean . . .
Dim hWnd As IntPtr
hwnd = (vbNullString, Name)

Public Sub Shutdown() . . .
Me.DestroyHandle()

Sending messages

Public Function SendData(ByVal DataString As String) As Boolean . . .
' Serialize data
IResult = (m_hTargetwnd,
Return True

End Function

Public Function SendCommand(ByVal Code As Integer) As Boolean . . .

Return (m_hTargetwnd,
New IntPtr(0), New IntPtr(Code))
End Function

Recelving messages

Protected Overrides Sub WndProc(ByRef m as Message)
If m.Msg = WM_USER Then
RaiseEvent CommandReceived(m.LParam.Tolnt32)
Elself m.Msg = WM_COPYDATA Then

' Deserialize data

RaiseEvent DataReceived(sData)
End If
MyBase.WndProc(m)
End Sub

Seralizing data

Dim b As New BinaryFormatter
Dim stream As New MemoryStream
Dim iDataSize, iResult As Integer
Dim bytes() As Byte

Dim pData As IntPtr

Dim cds As

b.Serialize(stream, DataString)
stream.Flush()

IDataSize = stream.Length

ReDim bytes(iDataSize - 1)
stream.Seek(0, SeekOrigin.Begin)
stream.Read(bytes, O, iDataSize)
stream.Close()

pData = Marshal.AllocCoTaskMem(iDataSize)
Marshal.Copy(bytes, O, pData, iDataSize)
cds.lpData = pData

cds.cbData = iDataSize

cds.dwData = New IntPtr(100)

Deserializing data

Dim cds As New

Dim cdsType As Type

Dim iDataSize As Integer

Dim bytes() As Byte

Dim b As New BinaryFormatter
Dim stream As MemoryStream
Dim sData As String

cdsType = cds.GetType

cds = CType(m.GetLParam(cdsType),
iIDataSize = cds.cbData

ReDim bytes(iDataSize)
Marshal.Copy(cds.lpData, bytes, O, iDataSize)
stream = New MemoryStream(bytes)

sData = b.Deserialize(stream)

TestHostClass

Public Interface ITestHost
Function Init(ByVal pPagelLayout As IPagelLayout) As Boolean
Sub SendCommand(ByVal sData As String)

End Interface

<ComClass(TestHostClass.Classld, TestHostClass.Interfaceld,
TestHostClass.Eventsld), Progld("TestHost.TestHostClass")>
Public Class TestHostClass

Implements ITestHost

Implements IPersistVariant

Private m_pPagelLayout As IPagelLayout
Private WithEvents m_Communicator As Communicator
Private m_sData As String

End Class

Initializing (int ArcMap)

Public Function Init(ByVal pPagelLayout As IPagelLayout) As Boolean . . .
Dim pAV As IActiveView = pPagelayout
Dim pMap As IMap = pAV.FocusMap
Dim pGC As IGraphicsContainer = pPagelLayout
Dim pFrame As IFrameElement = pGC.FindFrame(pMap)
Dim pProps As IElementProperties = pFrame
Dim oProp As Object = pProps.CustomProperty
If Not oProp Is Nothing Then
Return False
End If
pProps.CustomProperty = Me
m__ pPagelLayout = pPagelLayout

Return True
End Function

Implementing IPersistVariant

Public Sub Load(ByVal Stream As IVariantStream) . . .
Dim pPagelLayout As IPagelLayout = Nothing
Dim bSuccess As Boolean = True
Try
pPagelLayout = Stream.Read
Marshal.ReleaseComObject(Stream)
Catch ex As Exception
bSuccess = False
End Try
If bSuccess Then
m__pPagelLayout = pPagelLayout
End If
End Sub

Public Sub Save(ByVal Stream As IVariantStream) . . .
Stream.Write(m_pPagelLayout)
Marshal.ReleaseComObject(Stream)

End Sub

Sending and receiving commands

Public Sub SendCommand(ByVal sData As String) . . .
Dim bResult As Boolean = m_Communicator.SendData(sData)
bResult = m_Communicator.SendCommand(CommandCode)
End Sub

Private Sub m_Communicator DataReceived(ByVal sData As String) . . .

m_sData = sData
End Sub

Private Sub m_Communicator CodeReceived(ByVal Code As Integer) . . .

" Process command

End Sub

AddTestiHost.py

det AddTestHost():

PApp = GetApp()
pFact = CType(pApp, esriFramework.lObjectFactory)

pDoc = pApp-Document

pMxDoc = CType(pDoc, esriArcMapUl . IMxDocument)
pLayout = pMxDoc.PagelLayout

puUnk = pFact.Create(CLSID(TestHost.TestHostClass))
pTestHost = CType(pUnk, TestHost.lTestHost)
bResult = pTestHost. Init(pLayout)

print bResult

Main Application (TestApp)

TIP: Creating the ArcReader control programmatically avoids
consuming a Publisher license at design time

Imports ESRI.ArcGIS.PublisherControls
Imports TestComm

Public Class TestMalin

Private WithEvents m_Communicator As Communicator
Private WithEvents m_ARControl As ArcReaderControl

End Class

¥ Enatle application framework
Windows application framewark properties
¥ Enable %P visual styles Set to SI N g I e | nStan ce
WV Make e application . .
to avoid conflicts

WV Save My, Settings on Shukdown

Create the ArcReader control...

Private Sub TestMain_Load . . .

Dim AxArcReaderControll As AxArcReaderControl
Dim Init As System.ComponentModel.lSupportlnitialize

AxArcReaderControll = New AxArcReaderControl

Init = AxXArcReaderControll

Init.Beginlnit()

AxArcReaderControll.Location = PictureBox1.Location
AxArcReaderControll.Size = PictureBox1.Size
AxArcReaderControll.Name = "AxArcReaderControll1"
AxArcReaderControll.Dock = DockStyle.Fill
ToolStripContainerl.ContentPanel.Controls.Add(AxArcReaderControll)
Init.EndlInit()

AxArcReaderControll.BringToFront()
PictureBox1.Visible = False

m_ARControl = AxArcReaderControll.GetOcx

....and establish communication

Dim pARControl As IARControl = m_ARControl
m_Communicator = New Communicator
m_Communicator.Startup(AppName)
pARControl.LoadDocument(DefaultPMF)

Dim bResult As Boolean = m_Communicator.SetTargetName(HostName)
If Not bResult Then
MsgBox("Could not find host communicator." . . .

End If
SendCommand("host:target=" & AppName)

Tool actions are started by the main app...

Private Sub m_ARControl _OnMouseDown(ByVal button As Integer . . .
Dim sCommand As String =

If m_ToolAction = ToolAction.None Then
Exit Sub
End If

If button = 1 Then
Select Case m_ToolAction
Case ToolAction.RedLine
sCommand = "markup:add_line"
End Select
SendCommand(sCommand)

End If
End Sub

... and finished by the hest class

Private Function CaptureShape(ByVal opt As FeatureType) As IGeometry
Dim pRubberBand As IRubberBand = Nothing
Dim pShape As IGeometry = Nothing
If opt = FeatureType.Point Then
pRubberBand = New RubberPointClass
Elself opt = FeatureType.Line Then
pRubberBand = New RubberLineClass
Elself opt = FeatureType.Poly Then
pRubberBand = New RubberPolygonClass
End If
pShape = pRubberBand.TrackNew(m_pScreenDisp, Nothing)

Debugging the application

= Attach the ArcReaderHost process:

.;i.hiiall Skack | jEir'Eah:pn:nints | =] Dukput | _l_::ﬁF'eru:Iing Checkins | i] &ukos |jj Locals _;F'rn:n:e::ses

= Or, debug the host class in ArcReader, using a
separate testing app to send commands

Some final tips:

While handling a synchronous window message,
do as little as possible — avoid window operations

IMap.UpdateContents will not update the TOC In
the ArcReader control — adding and removing
layers will lead to a disconnect

Avoid intensive use of fine-grained ArcObjects In
NET

For best performance, use C++ to create coarse-
grained COM objects

Questions?

s Mark Cederholm
mcederholm@uesaz.com

= [his presentation and sample code
may be downloaded at:

http://www.pierssen.com/arcgis/misc.htm

