
A Technical Friend for PC ARC/INFO® Users
And Other Desktop GIS Software Volume 7 Number 4

Icon Key
PC ARC/INFO

ArcView

Idrisi

Inside: Farewell to Paper
As of this issue, PLP goes digital!
At the PLP OnLine site, two files
are offered for viewing and
download:

1) a PDF file (Adobe Acrobat 4.0)
of the issue, containing full
quality graphics and suitable for
printing

2) a zip file containing all source
code given in the issue, plus
occasional bonus code

A link to download Acrobat
Reader is offered as well.

The new electronic subscription
rate is $10 for 6 issues. An e-mail
address is required. Electronic
subscribers will receive the Web
address and password to each
issue.

Special Offer

Current subscribers are invited to
convert their print subscription to
an electronic one. Every print
issue remaining to your current
subscription will be converted to
4 electronic issues! All you have
to do is e-mail Pierssen
Publishing (see the back cover for
additional info).

What does this mean for
subscribers without e-mail or web
access? New or renewed
subscriptions for printed copies of
PLP will no longer be accepted.

If you cannot or do not choose to
convert to an electronic
subscription, you will continue to
receive printed copies of PLP
until your subscription expires.
Courtesy subscriptions will only
continue electronically.

To support secure internet credit
card orders, Pierssen Publishing
will be starting up its own web
server. The Linux box is up and
running, but the frame relay
connection is not yet in.
Hopefully by the next issue the
server will be on line. The
current web site will also post a
redirection when it happens.

Also, past issues (V7N1-V7N3)
will be converted to PDF format.

New Directions, New
Features

Due to the lack of contributors,
PLP will no longer support
ArcCAD or AtlasGIS. Until
further notice, supported
applications will be PC ARC/
INFO, ArcView, and Idrisi.

A new series, "Hacker's Corner",
begins this issue. While example
code is designed for Microsoft
Visual C++ programmers, the
concepts covered should be
applicable to other development
platforms. Let's get
our hands dirty!

PLP

Farewell to Paper 1

PC A/I and
Automation

8 Faking Cursors

2

Using Win32
DLLs in Avenue 13

Sorting Objects 14

Sorting Objects

14

Rectifying an
Image 16

12 Handling Comma
Delimited Data

Point Line Poly 2 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

POINT LINE POLY is published by Pierssen Publishing, 3125 West Wilson Drive, Flagstaff, AZ USA
86001. Electronic subscriptions: 6 issues $10 in US funds. Single Issues $2. E-mail and Web access is
required. Send subscriptions and fulfillment questions to PLP, piersen@primenet.com. Phone/FAX (520)
774-7905. Or mail to the above address. Submit material and technical questions to The Editor, at one of
the above addresses.

© Copyright 1999, Pierssen Publishing. All rights reserved. Point Line Poly is an independently produced publication of
Pierssen Publishing.

ISSN: 1099-2324

ESRI, ARC/INFO, PC ARC/INFO, and ArcView are registered trademarks; Data Automation Kit (DAK), Simple Macro Lan-
guage (SML), and Avenue are trademarks of Environmental Systems Research Institute, Inc. All other company and product
names mentioned are property of their respective owners.

POSTMASTER: Send address changes to: Point Line Poly
 Pierssen Publishing e-mail: piersen@primenet.com
 3125 West Wilson Drive
 Flagstaff, AZ USA 86001

NOTICE: Due to differences in hardware and software configurations, and differing user requirements, information published in
PLP may or may not be applicable to specific installations and user requirements. To ensure the accuracy of the information
published in PLP, Pierssen Publishing specifically disclaims responsibility for errors and omissions or the ability of users to im-
plement recommendations published in PLP.

Say, what? “Don't play anymore, but they understood sometimes an animal sick in Daddy the noises go thin dies and
Fluffy with wave the sound good my mind's been listening you down to drown. I'm going to call the police. They even brought
in the boy's body. He'll kill the ocean, thank you.” William S. Burroughs, My Education

PC ARC/INFO and Automation

Currently, PC A/I only has three commands that
facilitate communication with other Windows
applications: WIN RUN/RUNW and WIN CB.
Because (OLE) automation is not intrinsically
supported, in order to communicate with a server
application it is necessary to develop a client front-
end that PC A/I can invoke.

For this exercise, let's develop an automation server
that manages arrays of unsigned integers. Thanks to
MFC, creating an array handler class is a fairly
simple task. Let's look at the class declaration first:

ahandler.h

#include <afxtempl.h>
#include <afxcoll.h>

class AHandler
{

public:
 AHandler();
 UINT Add(UINT size);
 BOOL Remove(UINT arraynum);
 BOOL Set(UINT arraynum, UINT recnum,
UINT value);
 UINT Get(UINT arraynum, UINT
recnum);
 ~AHandler();
protected:
 UINT NewKeyValue;
 CMap<UINT, UINT, CUIntArray*,
CUIntArray*&> theMap;
};

A CMap object is used to maintain CUIntArray
objects, while a UINT is used to supply unique key
values. In this example, the array size must be
declared up front. Additional methods/code could
facilitate more flexible array handling. The code for
the class is as follows:

HACKER’S CORNER

Point Line Poly 3 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

ahandler.cpp

#include "ahandler.h"

AHandler::AHandler() {
 NewKeyValue = 0;
 theMap.InitHashTable(257);
 return;
};
UINT AHandler::Add(UINT size) {
 CUIntArray * a = new CUIntArray;
 UINT NewKey = NewKeyValue;
 NewKeyValue++;
 a->SetSize(size);
 theMap.SetAt(NewKey,a);
 return NewKey;
};
BOOL AHandler::Remove(UINT arraynum) {
 CUIntArray * a;
 if (theMap.Lookup(arraynum,a) == 0)
 return FALSE;
 a->RemoveAll();
 delete a;
 theMap.RemoveKey(arraynum);
 return TRUE;
};
BOOL AHandler::Set(UINT arraynum, UINT
recnum, UINT value) {
 CUIntArray * a;
 if (theMap.Lookup(arraynum,a) == 0)
 return FALSE;
 if ((UINT) a->GetSize() <= recnum)
 return FALSE;
 a->SetAt(recnum,(UINT) value);
 return TRUE;
};
UINT AHandler::Get(UINT arraynum, UINT
recnum) {
 CUIntArray * a;
 if (theMap.Lookup(arraynum,a) == 0)
 return 0;
 if ((UINT) a->GetSize() <= recnum)
 return 0;
 return (UINT) a->GetAt(recnum);
};
AHandler::~AHandler() {
 POSITION pos = theMap.
GetStartPosition();
 while(pos != NULL)
 {
 CUIntArray * a;
 UINT KeyNum;
 theMap.GetNextAssoc(pos,KeyNum,
a);

 a->RemoveAll();
 delete a;
 }
 theMap.RemoveAll();
}

Note the array destruction code; this helps assure that
the object model is leak-proof1. A more universal
array handler might manipulate CObArray objects, in
which case it would be necessary to assure the
destruction of each object in the CObArray.

The array handler server application is a hidden
CWinApp designed to support multiple users. A
UINT is used to track the number of users. By
providing methods to add, drop, and get the number
of users, a client can detect whether the server is
being used by others before closing it. The class
declarations are as follows:

ah.h

#define VC_EXTRALEAN
#include <afxwin.h>
#include <afxext.h>
#include <afxdisp.h>
#include "ahandler.h"

class CAhApp : public CWinApp
{
public:
 virtual BOOL InitInstance();
};
class CAhWin : public CFrameWnd
{
public:
 CAhWin();
 afx_msg void UserAdd();
 afx_msg void DropUser();
 afx_msg UINT NumUsers();
 afx_msg UINT AddArray(UINT size);
 afx_msg BOOL RemoveArray(UINT
arraynum);
 afx_msg BOOL SetRecord(UINT
arraynum, UINT recnum, UINT value);
 afx_msg UINT GetRecord(UINT
arraynum, UINT recnum);
 afx_msg void Close();
 BOOL RegisterActive();
protected:
 BOOL m_bAutoDelete;
 DWORD m_dwRegister;
 AHandler ah;

Point Line Poly 4 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

 UINT NumOfUsers;

 virtual ~CAhWin();
 virtual void PostNcDestroy();
 DECLARE_DISPATCH_MAP()
 DECLARE_DYNCREATE(CAhWin)
 DECLARE_OLECREATE(CAhWin)
};

#ifndef IMPLEMENT_OLECREATE2
#define IMPLEMENT_OLECREATE2
(class_name, external_name, l, w1, w2,
b1, b2, b3, b4, b5, b6, b7, b8) \
 AFX_DATADEF COleObjectFactory
class_name::factory(class_name::guid, \
 RUNTIME_CLASS(class_name), TRUE, _T
(external_name)); \
 const AFX_DATADEF GUID class_name::
guid = \
 { l, w1, w2, { b1, b2, b3, b4, b5,
b6, b7, b8 } };
#endif // IMPLEMENT_OLECREATE2

The server application is also designed to exist as
only one instance. Additional attempts to launch it
are not honored:

ah.cpp

#include "ah.h"

CAhApp theApp;

BOOL CAhApp::InitInstance()
{
 if (FindWindow(NULL,"Array
Handler") != NULL)
 return FALSE;
 if (!AfxOleInit())
 {
 TRACE("OLE Initialization
failed");
 return FALSE;
 }
 if (RunEmbedded() || RunAutomated())
 {
 COleTemplateServer::RegisterAll
();
 return TRUE;
 }
 COleObjectFactory::UpdateRegistryAll
();
 CAhWin * ahw = new CAhWin();
 m_nCmdShow = SW_HIDE;

 ahw->ShowWindow(m_nCmdShow);
 ahw->UpdateWindow();
 ahw->RegisterActive();
 m_pMainWnd = ahw;
 return TRUE;
}

The application's window acts as the automation
server. It keeps track of the number of users and acts
as a front end for the AHandler object. We won’t go
into the code here—you can view it in the PLP
OnLine code pack. (See file "ahwnd.cpp"; the
IMPLEMENT_OLECREATE2 parameters were
copied from a dry run of the Visual C++ MFC app
wizard.)

Implementing a Front End Client

Now that we have a server, we need to develop a
front end client that PC A/I can use to communicate
with it. The client doesn't need a window, but it does
need a dispatch driver. The client header file is as
follows:

arrayf.h

#define VC_EXTRALEAN

#include <afxwin.h>
#include <afxext.h>
#include <afxdisp.h>

class CRemoteAhWnd : public
COleDispatchDriver
{
public:
 void UserAdd();
 void DropUser();
 UINT NumUsers();
 UINT AddArray(UINT size);
 BOOL RemoveArray(UINT arraynum);
 BOOL SetRecord(UINT arraynum, UINT
recnum, UINT value);
 UINT GetRecord(UINT arraynum, UINT
recnum);
 void Close();
};
class CArrayfApp : public CWinApp
{
public:
 virtual BOOL InitInstance();
 CRemoteAhWnd ah;
private:

Point Line Poly 5 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

 void SetFromFile(UINT arraynum,
LPCTSTR fName);
 void SetFromWinSel(UINT arraynum,
LPCTSTR fName);
 void PostMsg(LPCTSTR Msg);
 void PostResult(UINT Result);
 void PostBResult(BOOL BResult);
};

The CRemoteAhWnd object handles the dispatches
(see file "ahtype.cpp" in the code pack). The numeric
assignments for the InvokeHelper statements
correspond to the order of the dispatch map
statements in the server application2.

The real meat is in the CWinApp code. First, let's
look at the "InitInstance" method:

arrayf.cpp

#include "arrayf.h"

CArrayfApp ArrayfApp;

BOOL CArrayfApp::InitInstance()
{
 char *tok;
 char cmd[256];
 CLSID clsid;
 COleException e;
 HRESULT hr;
 LPDISPATCH lpDispatch;
 LPUNKNOWN lpUnk;
 UINT size, arraynum, recnum, value;

 if (strlen(m_lpCmdLine) == 0)
 {
 PostMsg("USAGE: ARRAYF [U/D/N/A/
R/S/G/F/W/C] {options}");
 return TRUE;
 }
 if (!AfxOleInit())
 {
 PostMsg("ERROR: OLE
Initialization failed");
 return FALSE;
 }
 if (CLSIDFromProgID(OLESTR("ah.
Server"), &clsid) != S_OK)
 {
 PostMsg("ERROR: Could not find
CLSID for AH");
 return FALSE;

 }
 // We don't want to create a
dispatch in this app
 if (GetActiveObject(clsid, NULL,
&lpUnk) != S_OK)
 {
 PostMsg("ERROR: Could not find
active AH");
 return FALSE;
 }
 hr = lpUnk->QueryInterface
(IID_IDispatch,
 (LPVOID*)&lpDispatch);
 lpUnk->Release();
 if (hr == NOERROR)
 ah.AttachDispatch(lpDispatch,
TRUE);
 if (ah.m_lpDispatch == NULL)
 {
 PostMsg("ERROR: Could not attach
to AH");
 return FALSE;
 }
 strcpy(cmd,m_lpCmdLine);
 tok = strtok(cmd," ");
 switch(tolower(tok[0]))
 {
 case 'u':
 ah.UserAdd();
 break;
 case 'd':
 ah.DropUser();
 break;
 case 'n':
 PostResult(ah.NumUsers());
 break;
 case 'a':
 tok = strtok(NULL," ");
 size = atoi(tok);
 PostResult(ah.AddArray(size));
 break;
 case 'r':
 tok = strtok(NULL," ");
 arraynum = atoi(tok);
 PostBResult(ah.RemoveArray
(arraynum));
 break;
 case 's':
 tok = strtok(NULL," ");
 arraynum = atoi(tok);
 tok = strtok(NULL," ");
 recnum = atoi(tok);
 tok = strtok(NULL," ");
 value = atoi(tok);

Point Line Poly 6 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

 PostBResult(ah.SetRecord
(arraynum,recnum,value));
 break;
 case 'g':
 tok = strtok(NULL," ");
 arraynum = atoi(tok);
 tok = strtok(NULL," ");
 recnum = atoi(tok);
 PostResult(ah.GetRecord
(arraynum,recnum));
 break;
 case 'f':
 tok = strtok(NULL," ");
 arraynum = atoi(tok);
 tok = strtok(NULL,"\"");
 SetFromFile(arraynum,tok);
 break;
 case 'w':
 tok = strtok(NULL," ");
 arraynum = atoi(tok);
 tok = strtok(NULL,"\"");
 SetFromWinSel(arraynum,tok);
 break;
 case 'c':
 ah.Close();
 break;
 default:
 PostMsg("ERROR: Invalid
Option");
 return FALSE;
 }
 return TRUE;
}

Note that the client will not actually create an
instance of the server; rather, the server must be
launched separately. To understand the various
options, let's cover a typical sequence of commands:

arrayf U = add a user
arrayf A [n] = add an array of size [n] (returns a key
value [a])
arrayf S [a] [r] [v] = set element [r] of array [a]
equal to [v]
arrayf G [a] [r] = return value of element [r] of array
[a]
arrayf R [a] = remove array [a]
arrayf D = drop a user
arrayf N = return the current number of users
arrayf C = close the server application

There are two additional commands:

arrayf F [a] [f] = populate array [a] from file [f]
arrayf W [a] [w] = populate array [a] from file [w]

File [f] is an ASCII file with each line containing an
integer string. The "SetFromFile" method reads the
file and populates the array:

void CArrayfApp::SetFromFile(UINT
arraynum, LPCTSTR fName)
{
 FILE *infile;
 char input[81];
 UINT recnum = 0;
 UINT value;
 BOOL result;

 if ((infile = fopen(fName,"r")) ==
NULL)
 {
 PostMsg("ERROR: Could not open
file");
 return;
 }
 while (fgets(input, 80, infile) !=
NULL)
 {
 value = atoi(input);
 result = ah.SetRecord(arraynum,
recnum,value);
 recnum++;
 }
 fclose(infile);
 PostBResult(TRUE);
 return;
}

File [w] is a WIN SEL file as generated by
ARCPLOTW. Before looking at the
"SetFromWinSel" method, let's discuss the structure
of a WIN SEL file. It's easiest to think of one as a set
of bits:

Bit: 0 7 8 15 16 23
Set: 00101000 00011111 11111111

In the above file (binary values are backwards for
illustrative purposes), there are a total of 11 records.
Records 3 and 5 (bit 0 = record 1) are selected. The
remaining 5 bits of byte 2 are padding, and byte 3 is
the closing byte.

Okay, now let's look at the actual code:

Point Line Poly 7 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

void CArrayfApp::SetFromWinSel(UINT
arraynum, LPCTSTR fName)
{
 FILE *infile;
 BYTE input;
 UINT recnum = 0;
 UINT value = 1;
 BOOL result;

 if ((infile = fopen(fName,"rb")) ==
NULL)
 {
 PostMsg("ERROR: Could not open
file");
 return;
 }
 while (fread(&input, sizeof(input),
1, infile) != 0)
 {
 for(int i = 0;i < 8;i++)
 {
 if (input & 1)
 {
 result = ah.SetRecord
(arraynum,recnum,value);
 recnum++;
 }
 input = input >> 1;
 value++;
 }
 }
 fclose(infile);
 PostBResult(TRUE);
 return;
}

Note that, for simplicity, the routine will attempt to
set values beyond the actual end of the array. It
doesn't really matter, because the AHandler object is
smart enough to ignore such attempts3.

Finally, results are communicated via the clipboard:

void CArrayfApp::PostMsg(LPCTSTR Msg)
{
 HGLOBAL hg;
 int i;
 LPTSTR lp;

 if (!OpenClipboard(NULL))
 {
 THROW("Cannot open the
Clipboard");
 return;

 }
 EmptyClipboard();
 i = strlen(Msg);
 hg = GlobalAlloc(GMEM_DDESHARE,
 (i + 1) * sizeof(TCHAR));
 if (hg == NULL)
 {
 THROW("Unable to allocate
handle");
 CloseClipboard();
 return;
 }
 lp = (LPTSTR) GlobalLock(hg);
 memcpy(lp, Msg, i * sizeof(TCHAR));
 lp[i] = (TCHAR) 0;
 GlobalUnlock(hg);
 SetClipboardData(CF_TEXT,hg);
 CloseClipboard();
 return;
}
void CArrayfApp::PostResult(UINT
Result)
{
 char r[20];

 _itoa(Result,r,10);
 PostMsg(r);
 return;
}
void CArrayfApp::PostBResult(BOOL
BResult)
{
 if (BResult)
 PostMsg(".TRUE.");
 else
 PostMsg(".FALSE.");
 return;
}

See p. 8 for examples using both AH and ARRAYF
with PC A/I.

1For example memory leak testing code, see
"leaktest.cpp" in the PLP OnLine code pack.
2Normally this is only a concern if, as in this
example, the Visual C++ MFC app and class wizards
are bypassed in developing the applications.
3To be frank, I'm not entirely happy with the bit
testing algorithm, and can't help but feel that a better
approach is possible. If anybody knows one (Joe, are
you reading this?), I'd be glad to hear
about it and will report it in a future issue. PLP

Point Line Poly 8 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

Faking Cursors

Cursor processing allows the analysis of a selected
set of objects, one record at a time. This is
particularly useful for querying and/or setting
attributes on a case-by-case basis.

In the simplest case in TABLES or ARCPLOTW—
processing all records—a loop may be set up to
reselect each record for processing (see "ap_all.r" in
the PLP OnLine code pack). The situation, however,
is considerably more complex when dealing with a
particular selection set. In such a case the cursor
routine must find a way to store and manipulate the
selection set1. Also, because in ARCEDITW record
numbers change upon editing, a mechanism should
exist for updating the array.

The array handler applications developed on p. 2
provide a means to store record numbers in memory
and retrieve or modify them as needed. The
disadvantage of this approach is that communication
is only possible via WIN RUN/RUNW and WIN CB.
Thus this approach cannot be used in TABLES2.

EXAMPLE ONE: Generating Boundary
Attributes in ARCPLOTW

Polygon coverage VEG has four vegetation types:

TYPE TYPE_TXT

1 Conifer
2 Pinyon-Juniper
3 Sagebrush
4 Grassland

Arcs comprising vegetation boundaries are to be
classified as follows (lookup table LUT.VEGB):

TYPE TYPE_TXT

1 Conifer/PJ
2 Conifer/Sagebrush
3 Conifer/Grassland
4 PJ/Sagebrush
5 PJ/Grassland
6 Sagebrush/Grassland

First, TYPE and TYPE_TXT are added to VEG.
AAT:

ADDITEM VEG.AAT VEG.AAT TYPE 1 1 I
ADDITEM VEG.AAT VEG.AAT TYPE_TXT 20 20 C

Routine "ap_curs" is a "generic" routine for cycling
through a selection set in ARCPLOTW:

&routine ap_curs

&define cover -1 &var
&define feature -2 &var
&define numrec -11 &var
&define arraynum -12 &var
&define i -13 &var
&define id -14 &var
&define wksp -18 &var
&define temp -19 &var
&if &eq "x[cover]" "x" &do
 &delim < >
 &type "Usage: &r ap_curs [cover]
[feature]"
 &return
 &delim []
&end
&rem **** initialize cursor
&value [wksp] WKSP
&value [temp] ARC
WIN SEL W [cover] [feature] [wksp]t

Point Line Poly 9 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

$sel.lis
SHOW RESELECT [numrec] 0
&if &eq [numrec] 0 &do
 &type "ERROR: No records in
selection set"
 & DEL [wksp]t$sel.lis
 &return
&end
WIN PATH [temp]\APPS
&type "Starting server..."
WIN RUN ah
&type "Initializing cursor..."
WIN RUNW arrayf U
WIN RUNW arrayf A [numrec]
WIN CB R
&value [arraynum] 1
WIN RUNW arrayf W [arraynum] [wksp]t
$sel.lis
&rem **** loop through record set
&sv [i] 0
&while &rn [i] 0 %<[numrec] - 1> &do
 WIN RUNW arrayf G [arraynum] [i]
 WIN CB R
 &value [id] 1
 RES [cover] [feature] $RECNO IN
{[id]}
 &rem **** manipulate record
 &type "Processing record [id]..."
 &run ap_doit
 ASEL [cover] [feature]
 &inc [i]
&end
&rem **** remove cursor
&type "Removing cursor..."
WIN RUNW arrayf R [arraynum]
WIN RUNW arrayf D
WIN RUNW arrayf N
WIN CB R
&value [i] 1
&if &eq [i] 0 &do
 &type "Closing server..."
 WIN RUNW arrayf C
&end
&rem **** restore selection set
WIN SEL R [cover] [feature] [wksp]t
$sel.lis
& DEL [wksp]t$sel.lis
&return

Note that the routine expects the array handler
applications to reside in the %ARC%\APPS
directory. WIN SEL is used to save and restore the
selection set. WIN RUN is used to start the server
application, WIN RUNW is used to execute the client

front end, and WIN CB is used to get the results.
Routine "ap_doit" performs the record manipulation.
Before we look at that, however, let's look routine
"ap_run":

&routine ap_run

ADDITEM VEG.AAT VEG.AAT T_VEG 11 11 I
ADDITEM VEG.AAT VEG.AAT T_LT 1 1 I
ADDITEM VEG.AAT VEG.AAT T_RT 1 1 I
ARCPLOTW ap_proc
DROPITEM VEG.AAT VEG.AAT T_VEG
DROPITEM VEG.AAT VEG.AAT T_LT
DROPITEM VEG.AAT VEG.AAT T_RT
&return

This routine is run from the ARCW prompt; it adds
some temporary items, launches ARCPLOTW, and
then drops the items.

&routine ap_proc

CALC VEG ARC TYPE = 0
MOVEITEM VEG ARC ' ' TO TYPE_TEXT
CALC VEG ARC T_VEG = VEG_
CALC VEG ARC VEG_ = LPOLY_
JOIN VEG.AAT VEG.PAT VEG_
CALC VEG ARC T_LT = #TYPE
CALC VEG ARC VEG_ = RPOLY_
CALC VEG ARC T_RT = #TYPE
JOIN OFF
RES VEG ARC T_LT <> 0 AND T_RT <> 0
&r ap_curs VEG ARC
JOIN VEG.AAT LUT.VEGB TYPE
MOVEITEM VEG ARC #TYPE_TEXT TO
TYPE_TEXT
JOIN OFF
ASEL VEG ARC
CALC VEG ARC VEG_ = T_VEG
QUIT
&return

This routine saves VEG_ to T_VEG so that it can be
freed up to join to VEG.PAT. T_LT and T_RT are
populated with TYPE from the left- and right-hand
polygons, and arcs not corresponding to the edge of
the project area are reselected. Then "ap_curs" is
invoked for the selection set. Finally, TYPE_TEXT
is calculated from the lookup table.

Now let's look at "ap_doit":

Point Line Poly 10 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

&routine ap_doit

CALC VEG ARC -1 = T_LT * T_RT
&if &eq %-1 2 &do
 CALC VEG ARC TYPE = 1
&elseif &eq %-1 3 &do
 CALC VEG ARC TYPE = 2
&elseif &eq %-1 4 &do
 CALC VEG ARC TYPE = 3
&elseif &eq %-1 6 &do
 CALC VEG ARC TYPE = 4
&elseif &eq %-1 8 &do
 CALC VEG ARC TYPE = 5
&elseif &eq %-1 12 &do
 CALC VEG ARC TYPE = 6
&else
 &echo &debug
&end
&return

There are various ways to approach this, but because
multiplying two different TYPE values results in a
unique number, that is used for the check.

This actually is not the best possible example, as it
could have been handled using RESELECT
statements. Nonetheless, the value of a cursor is
evident when features need to be manipulated in a
way that RESELECT and CALC/MOVEITEM just
can't handle.

EXAMPLE TWO: Repositioning Points in
ARCEDITW

A point coverage STATIONS represents wildlife
monitoring stations along certain roads in the project
area (see "Faking Dynamic Segmentation" in V6N2).
The lead agency insists that the monitoring stations
be offset from the roads by 200 meters in random
directions. In this example, 0 degrees is north, 90
degrees is east, 180 degrees is south, and 270 degrees
is west.

First, the coverage is copied to STATION2. Routine
"ae_proc" is run within ARCEDITW:

&routine ae_proc

EDITC STATION2
EDITF LABEL
SHOW COORDINATE -18
COO KEY

SEL ALL
&cv -2 1 ran
&r ae_curs RESTORE
&rem UNSEL ALL
COO %-18
&return

Note the line seeding the random number generator.
Routine "ae_curs" has some significant differences
from "ap_curs":

&routine ae_curs

&define restore -1 &var
&define numrec -11 &var
&define arraynum -12 &var
&define i -13 &var
&define id -14 &var
&define wksp -18 &var
&define temp -19 &var
&if &eq "x[restore]" "x" &do
 &delim < >
 &type "Usage: &r ae_curs [RESTORE/
NORESTORE]"
 &return
 &delim []
&end
&rem **** initialize cursor
&value [wksp] WKSP
&value [temp] ARC
SHOW NUMBER SELECT [numrec]
&if &eq [numrec] 0 &do
 &type "ERROR: No records in
selection set"
 &return
&end
WIN PATH [temp]\APPS
&type "Starting server..."
WIN RUN ah
&type "Initializing cursor..."
WIN RUNW arrayf U
WIN RUNW arrayf A [numrec]
WIN CB R
&value [arraynum] 1
&sv [i] 1
&openw [wksp]t$sel.lis
&while &rn [i] 1 [numrec] &do
 SHOW SELECT %[i] [temp]
 &write [temp]
 &inc [i]
&end
&closew
WIN RUNW arrayf F [arraynum] [wksp]t
$sel.lis

Point Line Poly 11 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

& DEL [wksp]t$sel.lis
&rem **** loop through record set
&sv [i] 0
&while &rn [i] 0 %<[numrec] - 1> &do
 WIN RUNW arrayf G [arraynum] [i]
 WIN CB R
 &value [id] 1
 SEL $RECNO IN {[id]}
 &rem **** manipulate record
 &type "Processing record [id]..."
 &run ae_doit
 &rem **** update record number
 SHOW SELECT 1 [id]
 WIN RUNW arrayf S [arraynum] [i]
[id]
 &inc [i]
&end
&if &eq RESTORE [restore] &do
 &rem **** restore selection set
 &sv [i] 0
 &while &rn [i] 0 %<[numrec] - 1> &do
 WIN RUNW arrayf G [arraynum] [i]
 WIN CB R
 &value [id] 1
 ASEL $RECNO IN {[id]}
 &inc [i]
 &end
&end
&rem **** remove cursor
&type "Removing cursor..."
WIN RUNW arrayf R [arraynum]
WIN RUNW arrayf D
WIN RUNW arrayf N
WIN CB R
&value [i] 1
&if &eq [i] 0 &do
 &type "Closing server..."
 WIN RUNW arrayf C
&end
&return

Because WIN SEL is currently unavailable in
ARCEDITW, an ASCII file of record numbers is
written and passed on to the client front end. Note
also that the new record number is sent back to the
array handler. That's not important in this particular
application, but if you want to go both forward and
backward it's necessary (see the forms application in
the next issue). Without WIN SEL, restoring the
selection set is slow and clunky, which is why there's
an option not to restore it.

&routine ae_doit

&cv -1 200
&cv -2 360 * (0 ran)
&cv -3 %-1 * ((90 - %-2) cos)
&cv -4 %-1 * ((90 - %-2) sin)
MOVE
1 0 0
1 %-3 %-4
&return

Here's where the actual move is done. Very simple.

In the above figure, boxes represent the original
station positions and crosses the new positions.

One final note: a Pentium-based PC running
Windows NT really helps speed things up!

Next Issue: Cursors and Forms

1The example currently at http://www.primenet.com/
~piersen/PC/arctips/advanced/cursor.htm stores
record numbers within file-based global SML
variables, but this places a limitation on the number
of records that can be stored.
2This topic will be revisited after the release of PC A/
I 4.0.

PLP

Point Line Poly 12 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

The ADD FROM command in TABLES expects
comma separated values (CSV), with string data
enclosed in single quotes. When designing an
automated data input routine for TABLES, it may be
useful to analyze a line of input to determine what
items to create for the table. Routine "csv" will count
the number of tokens in a line of CSV or will extract
a specified token:

&routine csv

&define i -9 &var
&define tok -10 &var
&define opt -11 &var
&define in -12 &var
&define toknum -13 &var
&define num -14 &var
&define len -15 &var
&define chr -16 &var
&define quote -17 &var
&if &eq "x%-1" "x" &do
 &delim < >
 &type "Usage: &r CSV [COUNT/
EXTRACT] [string] {token_number}"
 &delim []
 &return
&end
&extract [opt] -1 1
&if &eq "x[opt]" "x#" &do
 &sv [opt] COUNT
&end
&if &ne "COUNT" "[opt]" &and &ne
"EXTRACT" "[opt]" &do
 &type "Option must be COUNT or
EXTRACT."
 &return
&end
&value [in] -2
&if &eq "x[in]" "x" &do
 &type "Input string is blank."
 &return
&end
&value [toknum] -3
&if &eq "EXTRACT" "[opt]" &and &eq "x
[toknum]" "x" &do
 &type "Token number not specified."
 &return
&end
&sv [i] 1

&sv [tok] 1
&sv [num] 1
&length [len] "[in]"
&sv [quote] .FALSE.
&while &rn [i] 1 [len] &do
 &value [chr] [in] [i] [i]
 &if &eq "'" "[chr]" &do
 &if &eq [quote] .TRUE. &do
 &value [chr] [in] %<[i] + 1> %
<[i] + 1>
 &if &eq "'" "[chr]" &do
 &inc [i]
 &else
 &sv [quote] .FALSE.
 &end
 &else
 &sv [quote] .TRUE.
 &end
 &elseif &eq "," "[chr]" &do
 &if &eq [quote] .FALSE. &do
 &if &eq "EXTRACT" "[opt]" &do
 &if &eq [toknum] [num] &do
 &value [chr] [in] [tok]
%<[i] - 1>
 &return "[chr]"
 &else
 &cv [tok] [i] + 1
 &end
 &end
 &inc [num]
 &end
 &end
 &inc [i]
&end
&if &eq EXTRACT [opt] &do
 &if &eq [toknum] [num] &do
 &value [chr] [in] [tok] [len]
 &return "[chr]"
 &else
 &type "Bad token number."
 &return
 &end
&end
&return [num]

Use COMPSML csv N to create "csv.sml". See
"csv_test.r" in the PLP OnLine code pack for an
example of its use.

Handling Comma Separated Data

PLP

Point Line Poly 13 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

If you go to ArcView's online help contents and
navigate to "Customizing and programming ArcView
with Avenue", "Creating an ArcView Application",
"Integrating ArcView with other applications",
"Dynamic link libraries (DLL)", "Using Microsoft
DLLs" , you'll find a discussion of calling WIN32
API functions using ArcView's DLL and DLLProc
Classes.

Here are three potentially useful examples: "mkdir.
ave" makes a unique temporary directory under the
$TEMP directory, "rmdir.ave" removes an existing
(empty) directory, and "rename.ave" renames a file.

mkdir.ave:

thePrefix = Self.Get(0)
dllName = FileName.
FindInSystemSearchPath("kernel32.dll")
u32DLL = DLL.Make(dllName)
MkDir = DLLProc.Make
(u32DLL,"CreateDirectoryA",
#DLLPROC_TYPE_INT32,
 {#DLLPROC_TYPE_STR,
#DLLPROC_TYPE_VOID})
strNewDir = FileName.GetTmpDir.MakeTmp
(thePrefix,"").GetFullName
result = MkDir.Call({strNewDir,nil})
if (result = 0) then
 strNewDir = "ERROR"
end
return strNewDir

rmdir.ave:

strRmDir = SELF.Get(0)
success = true
dllName = FileName.
FindInSystemSearchPath("kernel32.dll")
u32DLL = DLL.Make(dllName)
MkDir = DLLProc.Make
(u32DLL,"RemoveDirectoryA",
#DLLPROC_TYPE_INT32,
 {#DLLPROC_TYPE_STR})
result = MkDir.Call({strRmDir})
if (result = 0) then
 success = false
end
return success

rename.ave:

strOldFN = SELF.Get(0)
strNewFN = SELF.Get(1)
success = false
dllName = FileName.
FindInSystemSearchPath("winmm.dll")
u32DLL = DLL.Make(dllName)
Rename = DLLProc.Make
(u32DLL,"mmioRenameA",
#DLLPROC_TYPE_INT32,
 {#DLLPROC_TYPE_STR,
#DLLPROC_TYPE_STR, #DLLPROC_TYPE_VOID,
#DLLPROC_TYPE_INT32})
result = Rename.Call({strOldFN,
strNewFN, nil, 0})
if (result = 0) then
 success = true
end
return success

(One other example in the PLP OnLine code pack,
"getsysd.ave", retrieves the Windows System
directory.)

Remember that Avenue cannot handle all types of
data structures. For example, the second argument of
"CreateDirectoryA" is a SECURITY_ATTRIBUTES
structure. Fortunately, for this particular function the
second argument is optional and NULL may be
passed instead.

For an in-depth discussion of the Win32 API (a.k.a.
"Platform SDK"), you can purchase the MSDN
Library CD-ROM (free with Visual Basic or C++ pro
editions), or one of several books available on the
market. A list of the Win32 API declarations for
Visual Basic may be downloaded at:

http://www.microsoft.com/officedev/o-free.htm

Finally, "rmfiles.ave" in the PLP Online code pack
doesn't use DLL calls. It's just a reminder that you
can use ReadFiles to find and remove files in a
directory.

Using Win32 DLLs in Avenue

PLP

Point Line Poly 14 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

This is one of my all-time favorite Avenue scripts.
An implementation of the quick sort algorithm1,
QSort can sort a list of ANY objects for which a
comparison routine may be devised. There are two
arguments: the list of objects to be sorted and the
name of the comparison script to be used. The
comparison script must be executable as follows:

 test = av.Run(ScriptName,{obj1,obj2})

and must return a number such that:

 test < 0 when obj1 < obj2
 test = 0 when obj1 = obj2
 test > 0 when obj1 > obj2

QSort.ave:

theList = SELF.Get(0)
ScriptName = SELF.Get(1)
n = theList.Count
if (n < 2) then return theList end
l = 0
r = n - 1
theStack = Stack.Make
theStack.Push({l,r})
av.ShowMsg("Sorting...")
e = 0
nume = n
while (theStack.Depth > 0)
 e = e + 1
 av.SetStatus(e / nume * 100)
 arg = theStack.Pop
 l = arg.Get(0)
 r = arg.Get(1)
 i = l
 j = r
 pivot = theList.Get((l + r) / 2)
 NotDone = True
 while (NotDone)
 while (av.Run(Scriptname,
{theList.Get(i),pivot}) < 0)
 i = i + 1
 end
 while (av.Run(Scriptname,
{theList.Get(j),pivot}) > 0)
 j = j - 1
 end

 if (i <= j) then
 temp = theList.Get(i)
 theList.Set(i, theList.Get(j))
 theList.Set(j, temp)
 i = i + 1
 j = j - 1
 end
 NotDone = (i <= j)
 end
 if (i < r) then
 theStack.Push({i,r})
 end
 if (l < j) then
 theStack.Push({l,j})
 end
end
av.ClearMsg
av.ClearStatus
return theList

For example, given a
shapefile with
overlapping
polygons, some of
which are hidden:

Let's sort the records
so that all polygons
will be visible.

SortPoly.ave:

theTitle = "Sort Polygons"
theView = av.GetActiveDoc
theTheme = theView.GetActiveThemes.Get
(0)
inFTab = theTheme.GetFTab
' Specify the output shapefile...
fnDefault = FileName.GetCWD.MakeTmp
("shape","shp")
fnOutput = FileDialog.Put
(fnDefault,"*.shp","Output Shape
File")
if (fnOutput = nil) then exit end
' Use selected shapes if there are any,
otherwise iterate
' through the entire FTab...
if (inFTab.GetSelection.Count > 0) then

Sorting Objects

Point Line Poly 15 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

 colToProcess = inFTab.GetSelection
 nRecs = colToProcess.Count
else
 colToProcess = inFTab
 nRecs = colToProcess.GetNumRecords
end
'**** set global variable for the
comparison routine
_theFTab = inFTab
'**** generate list of records
rlist = List.Make
for each r in colToProcess
 rlist.Add(r.Clone)
end
'**** sort it
slist = av.Run("qsort",
{rlist,"CompPoly"})
_theFTab = nil
'**** now write out the new records
fnOutput.SetExtension("shp")
outFTab = FTab.MakeNew(fnOutput,
POLYGON)
inFields = inFTab.GetFields
newFields = List.Make
for each f in inFields
 if (f.GetName <> "shape") then
 newFields.Add(f.Clone)
 end
end
outFTab.AddFields(newfields)
nCount = 0
nRecAdded = 0
mpCount = 0
inSF = inFTab.FindField("shape")
outSF = outFTab.FindField("shape")
for each r in slist
 nRecNew = outFTab.AddRecord
 for each inF in inFTab.GetFields
 fName = inF.GetName
 outF = outFTab.FindField(fName)
 val = inFTab.ReturnValue(inF,r)
 outFTab.SetValue(outF,nRecNew,
val)
 end
 nRecAdded = nRecAdded + 1
 nCount = nCount + 1
 av.SetStatus((nCount / nRecs) * 100)
end
av.ClearStatus
av.ClearMsg
if (MsgBox.YesNo("Add shapefile as
theme to a view?",
 theTitle, true).Not) then
 exit

end
thmNew = FTheme.Make(outFTab)
theView.AddTheme(thmNew)

Note the global variable "_theFTab", which is used in
turn by the comparison routine:

CompPoly.ave:

a = SELF.Get(0)
b = SELF.Get(1)
sf = _theFTab.FindField("shape")
p1 = _theFTab.ReturnValue(sf,a)
p2 = _theFTab.ReturnValue(sf,b)
if (p1.Contains(p2)) then return -1 end
if (p2.Contains(p1)) then return 1 end
if (p1.ReturnArea > p2.ReturnArea) then
return -1 end
if (p2.ReturnArea > p1.ReturnArea) then
return 1 end
return 0

In the comparison
routine, polygons to be
drawn in the back are
"lesser" than polygons
to be drawn in the
front. The result:

1This version is based on the algorithm at Larry
Ogren's web site:
http://www.azstarnet.com/~logren/qsort.htm
Of several versions tested (including one from
Microsoft's web site!), it was by far the
best.

PLP

Point Line Poly 16 Volume 7 Number 4

A Technical Friend for ARC/INFO® Users

When rectifying an image using RESAMPLE,
finding the minimum and maximum X-Y values for
the output image may seem a daunting task. One
quick way to find them is to create a vector file
representing the boundary of the image and then
resampling it. For example, an image imported from
a Windows bitmap (.BMP) file will be given X-Y
values ranging from 0 to 1. A vector file
representing the boundary would be as follows:

I01.VEC:

1 5
0 0
0 1
1 1
1 0
0 0
0 0

I01.DOC:

file title : Frame file
id type : integer
file type : ascii
object type : line
ref. system : plane
ref. units : meters
unit dist. : 1.0000000
min. X : 0

max. X : 1
min. Y : 0
max. Y : 1
pos'n error : unknown
resolution : unknown

When you resample the vector file, give arbitrary min
and max values such as -999999 and 999999. Given
the following correspondence file:

4
.0326804 .6750771 -11271 27746
.036572 .3038769 -11288 13876
.861845 .6800654 11271 27746
.8675624 .3096441 11288 13876

the resulting polygon will be:

1.0000000 5
-12392.7832031 2512.3005371
-12040.7099609 39913.6445313
15133.9785156 39671.3164063
14781.9052734 2269.9726563
-12392.7832031 2512.3005371
0 0

Thus if the desired resolution is 10, MinX = -12400,
MaxX = 15140, MinY = 2260, MaxY = 39920,
Columns = 2754, and Rows = 3766.

Rectifying an Image

PLP

PLP OnLine
http://www.primenet.com/~piersen/PLP

User Name: plpv7n4
Password: 4oku9u6g

To convert your subscription from print to
electronic:

E-mail Pierssen Publishing: piersen@primenet.com
Subject: Convert PLP Subscription

The number of issues remaining to your subscription
will automatically be multiplied by 4. In the future,
you will be notified by e-mail when a new issue of
PLP is available, or when your subscription is
expiring.

You will also be notified when Pierssen Publishing's
new web site is on line.

