
Volume Number7 2

Good IdeasMacro

Buried Jewel

Editorial

Off the Wire

Review

Lesson / Tutorial

Positions

Calendar

Doctor's Column

Announcements

Letters

Icon Key

A Technical Friend for PC ARC/INFO Users
and Other ESRI Desktop Software

®

Idrisi: Third Leg
in the Tripod

Idrisi and Digital
Raster Graphics

PC ARC/INFO
Contours into
Idrisi

Idrisi Images
into ArcView

Supporting Custom
Images in ArcView

Idrisi’s API

Pulling Items

Clark Labs

1

4

6

7

8

12

15

16

Inside: Idrisi: Third Leg in the Tripod
Editor

Raster!

Many GIS professionals raised in
the vector paradigm have become
painfully aware of something
missing in their lives.

How many of you have spent
hours developing a map only to
be asked: "Looks great, but
could you plot that on a topo
map?" For me, ArcView was
useless until Version 2.1 came
out packaged with Avenue,
allowing me to create a tool to

register scanned images. Even
then, the task of scanning and
stitching pieces of quad maps
was a nightmare. Needless to
say, as USGS DRGs (and
increasingly DOQs) have
become available, use of them as
base layers for maps has risen
dramatically.

But raster-based GIS involves
more than pretty pictures. Host
ARC/INFO users familiar with

GRID know the power of grid
algebra, cost, and surface
functions. However, even GRID
out-of-the-box lacks most of the
functionality associated with
image processing packages such
as Erdas Imagine or TNTmips.

Idrisi, produced by Clark Labs (a
nonprofit project within the
Graduate School of Geography at
Clark University), is a low-cost
raster-based GIS package that
combines a great deal of
grid/image processing
functionality (see comparison
chart on p. 3). Although
developed chiefly for educational
purposes, it has proven an
excellent toolkit for low-budget
GIS shops around the world.

For me, the chief drawback of
Idrisi in the past has been its
basic incompatibility with
ArcView and PC ARC/INFO.
This has changed with two
developments: 1) the release of
Idrisi 2.0 for Windows, which
can read and write shapefiles,
and 2) the creation of the Idrisi
image extension for ArcView 3.1.

Perhaps the greatest milestone
will be the release of PC A/I
Version 4.0, which will support
images (including Idrisi) as
background layers. As a result,
AV's significance as an editing
tool will shrink considerably. AV

(continued on p. 2)

PC ARC/INFO

Idrisi

ArcView

shapefiles
images*

shapefiles
images

c
o
v
e
ra

g
e
s

s
h
a
p
e
fi
le

s

*PC A/I Version 4

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

2

POINT LINE POLY

PLP

Point Line Poly

PLP
PLP

PLP

The Western Lands

is published by Pierssen Publishing, 3125 West Wilson Drive, Flagstaff, AZ USA
86001. Domestic subscriptions: 6 issues $35. Foreign: 6 issues $50. Single Issues $7 domestic, $10
foreign. Send subscriptions and fulfillment questions to Circulation Dept., 3125 West Wilson Drive,
Flagstaff, AZ USA 86001. Or call (520) 774-7905. Submit material and technical questions to The Editor,
at the address above.

© Copyright 1998, Pierssen Publishing. All rights reserved. is an independently produced publication of
Pierssen Publishing.

ISSN: 1099-2324

ESRI, ARC/INFO, PC ARC/INFO, ArcView, and ArcCAD are registered trademarks; Atlas GIS, Data Automation Kit (DAK),
Simple Macro Language (SML), and Avenue are trademarks of Environmental Systems Research Institute, Inc. All other
company and product names mentioned are property of their respective owners.

POSTMASTER: Send address changes to: Point Line Poly
Pierssen Publishing e-mail: piersen@primenet.com
3125 West Wilson Drive
Flagstaff, AZ USA 86001

NOTICE: Due to differences in hardware and software configurations, and differing user requirements, information published in
may or may not be applicable to specific installations and user requirements. To ensure the accuracy of the information

published in , Pierssen Publishing specifically disclaims responsibility for errors and omissions or the ability of users to
implement recommendations published in .

“A flat world was ours and everything in it had a name once and all the names were ours once. With perspective,
names escape from the paper and scatter into the minds of men so they can never be held down again.”
Say, what?

William S. Burroughs,

PLP

was never really intended for large-scale data
creation and, for many users, should revert to a
more appropriate role: data browsing and
integration, simple queries, and quick, flexible map
creation.

The comparison table on p. 3 of Idrisi vs. the
ArcView Spatial Analyst and Image Analysis
extensions should give you a good idea of what
Idrisi is and isn’t capable of doing. One of Idrisi’s
greatest strengths is its ability to project images ; the
only way you could do that in ArcView would be to
project an array of control points and then warp the
image to them. On the other hand, Idrisi currently
lacks the ability to produce contours from DEMs, or
to perform direct vector-raster overlays, two of the
more powerful features of Spatial Analyst.

Idrisi image files (.IMG) may have 8-bit (byte), 16-
bit (integer), or 32-bit (floating point) values, and
may be up to 32677x32677 in size. Also, Idrisi
image files support run-time compression. For
attribute files, Idrisi supports ASCII (.VAL, .FXL),
Access (.MDB), and xBASE (.DBF) formats.

Version 3.0 of Idrisi, due out by mid-1999, will have
a number enhanced features, including full 32-bit
coding, 24-bit color image support, and direct DRG
import. Idrisi’s API will also be restructured and
made less quirky, facilitating the development of
custom applications within the Idrisi framework.

Clark Labs has entered the vector-based GIS realm
through its introduction of CartaLinx, a topological
vector data creation and editing package which
could prove competitive to DAK. Future planned
releases include AnaLinx and Surface Analyst, add-
ons for vector overlay analysis, TIN creation,
contouring, and visualization.

Be aware that Idrisi’s projection engine is not
identical to that of ARC/INFO or ArcView, leading
to slightly different results (though generally less
than 0.5 meters). Also, make sure that the projection
parameters are the same: a difference in a scale
factor of 0.00003333 could lead to a 60 foot shift or
more.

What Idrisi Can (and Can’t) Do

Other (and Future) Idrisi
Developments

1

1

(continued from p. 1)

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

3

Image AnalysisSpatial AnalystIdrisi

••Raster Attribute Table

14515Number of Raster Import Formats

••Vector to Raster Conversion

••Raster to Point,Poly Conversion

•Raster to Line Conversion

41Point Surface Interpolation: Methods

•Surface Interpolation from Contours

•Density Surface from Points

••Euclidean Distance

••Cost Distance/Path Analysis

••Allocation

•Contour Generation

••Shaded Relief / Ilumination

•Orthographic Display / Image Draping

•••Histograms

?••Profiles

••Grid Algebra

••Cross-tabulation

•Vector-Raster Overlay

••Aspect

•Surface Curvature

84Slope Method: Neighbors

••Viewshed Analysis

••Local/Zone Statistics

?•Autocorrelation

•••Aggregation

••Pattern Analysis

3210Filter Analysis: Number of Types

•••Boundary Functions

•Regression Analysis

••Change Detection

••Watershed Determination

•Stream Flow Modelling

•Flow Accumulation

•Projection / Datum Transformation

•••Rectification / Resampling

•Store/Display Geometry and Combine

Bands w/o Creating New Image Files

••Brightness/Contrast/Stretch

•••Reclassification

••Unsupervised Classification

?•Hyperspectral Classification

••NDVI Analysis

•Fuzzy Classifiers and Bayesian Logic

•Multi-Criteria Evaluation Tools

?••Merge

?••Extract by Rectangle

•Extract by Shape or Value

•Application Programming Interface

••Object-Oriented Access via Avenue

Functionality of the Image Analysis extension is not known in detail by the reviewer—known functional
categories were determined from the white paper published by ESRI and ERDAS. See p. 15 for a link to
Idrisi’s detailed online command description.

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

4

Idrisi and Digital Raster Graphics

Importing DRG Images into Idrisi

Concatenating DRG Images in Idrisi

Clark Labs has announced the eventual release of a
module to import DRG images directly. Until then,
the workaround is to use a graphics utility package
to convert the image to a compatible format.

Windows bitmap (BMP) format is generally
preferable to uncompressed TIFF because the
BMPIDRIS module runs more quickly than
TIFIDRIS.

Macro Example:

Note that
argument

specifying the name of an output palette file (in this
case “drg”) is required, and the output palette file
will be written to the IDRISIW directory.

Once the image is imported, its georeferencing
information must be entered into the documentation
file. Two programs are available for download ,
REDOC.EXE and REDOCW.EXE. The program
REDOC.EXE, executable from the MS-DOS
prompt, reads the .FGD metadata file of a DRG

image and enters the appropriate information into
the .DOC file, optionally applying a y-shift to the
coordinates. For example:

REDOC only affects the title, min. X, max. X, min.
Y, max. Y, and resolution entries of the
documentation file; other data (e.g. ref. system) will
need to be entered manually. REDOCW works
similarly save that it reads georeferencing
information from the .TFW world file.

Because DRG images contain information outside
the actual map area (titles, legends, etc.) it is
necessary to set those cells to 0. This may be done
by means of POLYRAS and OVERLAY.

(Image
Alchemy is highly recommended because it’s fairly
inexpensive, has a command line interface, can be
used for batch processing, supports a multitude of
formats, and is VERY FAST.)

Although the projection and datum may
be read from the .FGD file, the ellipsoid may not be
correctly reported. For example, O35113G7.FGD
reports "GRS 1980" but is actually "Clarke 1866".
Thus the appropriate parameter file is US27TM12
rather than US83TM12.

Avoid packbit compression during this
process, as it may lead to image shifting.

BMPIDRIS x 2 i01 i01 drg

redoc i01 i01

Idrisi’s online documentation for this
macro command is incorrect. The

1

WARNING:

WARNING:

1) Create a lat/long vector file representing the
map area.

Idrisi Basic Concepts:

The Idrisi-oriented articles in
this issue assume some working
knowledge of Idrisi and its file
types.

For those of you who just want
to get the general idea of what’s
going on, this table lists some of
the more basic file types (there
are many others!).

File Type Extension Description

Image File IM G Sto res image data

Documentation F ile D OC Sto res geo referencing in fo and metadata

Vecto r File VEC Sto res vecto r featu re geometry , may be ASC II o r

b inary

Vecto r Documentation

File

D VC Sto res metadata

Binary Palette File SM P Sto res co lo rmap fo r pseudoco lo r rendering

ASC II Palette File PA L O lder vers ion o f co lormap

Reference System

Parameter File

R EF Sto res coo rd inate system parameters fo r the

p ro jection eng ine.

Id ris i M acro Language IM L Rud imen tary batch p rocess ing language fo r

au tomating most of Id ris i’s commands.

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

5

The program FRAME.EXE , executable from the
MS-DOS prompt, reads the .FGD metadata file of
a DRG image and writes out a vector file
representing the map area in lat/long. For example:

Note that the default ref. system is LATLONG. In
the above example, the DRG uses the Clarke 1866
spheroid; thus the .DVC file has been edited to
refer to a parameter file called LATLON27:

Macro Example:

Use INITIAL to create an image from the DRG with a
value of 0. Then use POLYRAS to add the vector file
data to the image. Because the polygon's value is set to
1 and the INITIAL image is set to 0, the result is a
mask that may be multiplied against the DRG image to
zero out the margin area.

Macro Example:

Macro Example:

Macro Example:

(See WARNING above.)

Macro Example:

1

frame i01 i01

1 5
-113.875000 35.750000
-113.875000 35.875000
-113.750000 35.875000
-113.750000 35.750000
-113.875000 35.750000
0 0

file title : Frame file
id type : integer
file type : ascii
object type : line
ref. system : latlon27
ref. units : deg
unit dist. : 1.0000000
min. X : -113.875000
max. X : -113.750000
min. Y : 35.750000
max. Y : 35.875000
pos'n error : unknown
resolution : unknown

ref. system : Geodetic Coordinates
(Latitide/Longitude)
projection : none
datum : NAD27
delta WGS84 : -8 160 176
ellipsoid : Clarke 1866
major s-ax : 6378206.40
minor s-ax : 6356583.80
origin long : 0
origin lat : 0
origin X : 0
origin Y : 0
scale fac : 1.0
units : deg
parameters : 0

PROJECT x 2 i01 latlon27 i01p us27tm12

INITIAL x i01v 3 1 0 1 i01 unspecified
POLYRAS x i01p i01v
OVERLAY x 3 i01 i01v i01ov

CONCAT x # 4 drg 2 i01ov i02ov i03ov
i04ov

CONCAT x # 4 drgv 2 i01v i02v i03v i04v

RECLASS x i drgv drgr 2 0 1 2 1 0 1
-9999

i01.vec:

i01.dvc:

latlon27.ref:

2) Project the vector file to the DRG's reference
system.

3) Convert the vector file to a raster mask and
overlay the DRG image.

4) CONCAT the resulting images using the
transparent option.

[The remaining steps convert the margin areas
back to white; they are optional.]

5) CONCAT the raster masks using the transparent
option.

6) Use RECLASS to swap the 0 and 1 values.

WARNING: Make sure you have downloaded the
latest Idrisi update, as it fixes a CONCAT bug (see p.
15 for more info).

(Continued on p. 8)

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

6

Importing Contours from PC ARC/INFO

Users who maintain topographic datasets in PC
ARC/INFO may bring them into Idrisi to create a
surface. Idrisi’s surface functions (see p. 3) include
slope/aspect analysis, hillshading, and watershed
delineation. The basic process is as follows:

1) In PC ARC/INFO, use ARCSHAPE to export the
contour data.

2) In Idrisi, use SHAPEIDR to convert the shapefile
to an Idrisi vector file.

The command may be executed
through the API (see p. 8) but the .MDB values file
will not automatically be created.

3) Use INITIAL to create a base image for the area
(the vector's document file contains min and max
coordinate information).

Macro Example:

4) Use LINERAS to add line values to the image.

Macro Example:

5) In DATABASE WORKSHOP, open the vector
attribute table and assign the elevation field values to
the image . Use IDR_ID as
the feature definition field. Because DW requires a
(2-byte) integer field to assign values to an integer
image, you may need to add an integer field and
populate it from the elevation field.

SQL Example:

6) Use INTERCON to interpolate the surface
elevations from the contours. To estimate corner
values, you can use the cursor query tool on the
display created by the ASSIGN operation in step 5.

Macro Example:

7) Apply FILTER as desired to smooth out any
angular effects.

Macro Example:

8) [Optional] Crop the DEM to the project boundary.
If the project area is irregularly shaped, create a
boundary polygon in PC ARC/INFO. The polygon
should be completely inside the contours so that
edge effects may be clipped out. Convert the
coverage to a shapefile and import it into Idrisi.

Use INITIAL to create an image from the DEM with
a value of 0. Then use POLYRAS to add the vector
file data to the image. Because the polygon's value
(IDR_ID) is set to 1 and the INITIAL image is set to
0, the result is a mask that may be multiplied against
the DEM image to zero out the outlying areas.

Macro Example:

Finally, before performing any surface analysis, you
will want to do the following in DOCUMENT: a)
make sure that the value units are set appropriately,
and b) set the flag value to “0” and the flag
definition to “background”.

ARCSHAPE topo topo line

INITIAL x topo 1 1 0 2 815 481 plane
ft 11540 19690 9970 14780 1.0 ft

LINERAS x topo topo

UPDATE topo
SET [elev2] = [elev]

INTERCON x topo2 dem 0 1628 1466 1402
1417

FILTER x dem dem2 1

INITIAL x demv 3 1 0 1 dem2
unspecified
POLYRAS x clip demv
OVERLAY x 3 dem2 demv demclip

WARNING: Do NOT use the macro version of this
command, as it has a serious bug and will wipe out
the .DBF file!

(see illustration on p. 7)

PLP

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

7

Using Idrisi Images in ArcView

Displaying Idrisi Images in ArcView

Exporting Idrisi Images to ArcView

ArcView 3.1 users may display and print Idrisi
images directly using the AVIdris extension .
Supported data types are byte, integer, and real, and
supported file types are binary and packed binary
(not ASCII).

By default, images are displayed in gray scale. If a
palette (.SMP or .PAL) file is present with the same
name as an image, the image will be displayed using
that color scheme. As with the Display Launcher in
Idrisi, integer and real images are scaled to 0-255; if
an SMP palette file is present, the lower and upper
autoscale limit values will be used for scaling.

AVIdris takes advantage of AV 3.1’s new ImgDLL
class, which is discussed in greater depth on p. 12.

There are two basic export options: ERDAS and
TIFF. ERDAS format may be exported in one step,
but cannot be compressed and requires setting up a
colormap in ArcView. TIFF format may be
compressed and requires no colormap, but exporting
and georeferencing is a two-step process. Of the two
formats, ArcView seems to display TIFF much more
efficiently.

1) Use ERDIDRIS to export the image to a .GIS file.

Macro Example:

2) Use PALETTE WORKSHOP to export the palette
(.SMP) to a .PAL file (no Macro command
available).

3) In ArcView, run the script View.LoadGIS to load
the image as a theme and assign color values from
the .PAL file.

USGS Digital Raster Graphic (DRG) images use a
standard palette. The script View.LoadDRG will
load the image as a theme in ArcView and assign the
standard DRG palette without need to create a .PAL
file.

1) Use TIFIDRIS to export the image to a .TIF file,
specifying the name of the palette to be used.

Macro Example:

2) Create a world file (.TFW) containing the
georeferencing information. The program
WORLD.EXE , executable from the MS-DOS
prompt, reads the document file of the image and
generates the appropriate world file. For example:

3) [Optional, highly recommended] If compression
is desired, use a third-party program (e.g. Corel
Photo-Paint or Image Alchemy) to convert the image
to TIFF with packbit compression. Depending on the
compression ratio, ArcView can handle packbit
compressed TIFF images much more efficiently than
uncompressed.

The extension may be downloaded at:
www.primenet.com/~piersen/arcview/view.htm
May be downloaded at:

www.primenet.com/~piersen/idrisi/arcview.htm

1

2

2

2

1

2

Exporting to ERDAS

Exporting to TIFF

ERDIDRIS x 3 drg drg.gis

TIFIDRIS x 2 drg drg 90 drg

world drg drg

PLP

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

8

7) Use OVERLAY with the Cover option to
create the final image.

Macro Example:

As you can see, this process lends itself fairly well to
automation.

These programs may be downloaded at:
www.primenet.com/~piersen/idrisi/drg.htm

OVERLAY x 7 drgr drg drgw

1

(Continued from p. 5)

PLP

Idrisi’s API

Although Idrisi for Windows will accept a list of
macro commands in a text file (default .IML
extension), the ability to write even relatively simple
programs is virtually nonexistent. Fortunately, Clark
Labs has made an API available for free download ,
which programmers in Visual C++/Basic, Delphi, or
other Windows-compatible packages may use.

To install the API, all that is necessary is to copy
MERCURY.DLL and MERCUR32.DLL to the
Windows system directory; the existing DLLs may
be renamed to a .BAK extension.

The file "api documentation.rtf" documents the
functions that are available. Also included are
declaration and/or library files for Visual Basic,
Borland Pascal, Delphi, and C++ Builder.

Visual C++ compatible .LIB and .H files are not
included with the API; therefore, users must link to
the DLL explicitly. Because explicit links are
somewhat clunky to code, it may be desirable to
create a class that handles them. The following
header file is an example of a class called Idrapp that
handles the minimum functions necessary to check if
Idrisi is active, launch Idrisi, set the working
directory, register a client, launch a module (macro
statement), monitor the progress of a launched
module, unregister a client, and close Idrisi :

1

2

Using the API in Visual C++

idrapp.h:

#define PROCSTATUS_ACTIVE 1
#define PROCSTATUS_NORMAL_TERMINATE 2
#define PROCSTATUS_ERROR_TERMINATE 3
#define REPORT_TYPE_WORKING 1
#define REPORT_TYPE_PERCENTDONE 2

#define REPORT_TYPE_PASS_X_OF_N 3
#define REPORT_TYPE_PASS_TOTALUNKNOWN
4
#define REPORT_TYPE_COMPLEXPASS 5
#define MONITOR_FROM_CLIENT_ONLY 0
#define MONITOR_FROM_IDRISI 1
#define SHOW_IDRISI_HIDDEN 0
#define SHOW_IDRISI_NORMAL 1
#define SHOW_IDRISI_MINIMIZED 2
#define SHOW_IDRISI_MAXIMIZED 3

struct ProgStruct
{
short Status;
short ReportType;
short PassNum;
short TotalPasses;
float PercentDone;
short ErrorCode;
char ErrorFile[256];
char ErrorMessage[256];
char SubstString1[256];
char SubstString2[256];

};

class Idrapp
{
protected:

HINSTANCE hinstLib;
public:

Idrapp(); // constructor
short IsIdrisiPresent();
short LaunchIdrisi(short);
short SetDataDirectory(char *);
short RegisterClient();
short LaunchModule(short, short,

char *, char *, char *, char *, short
*);

short GetProgress(short, short,
ProgStruct *);

short UnRegisterClient(short);

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

9

short CloseIdrisi();
~Idrapp(); // destructor

};

#include <windows.h>
#include "idrapp.h"

typedef short (CALLBACK*
IsIdrisiPresentFuncType)();
typedef short (CALLBACK*
LaunchIdrisiFuncType)(short);
typedef short (CALLBACK*
SetDataDirectoryFuncType)(char *);
typedef short (CALLBACK*
RegisterClientFuncType)();
typedef short (CALLBACK*
LaunchModuleFuncType)(short, short,
char *, char *, char *, char *, short
*);
typedef short (CALLBACK*
GetProgressFuncType)(short, short,
ProgStruct *);
typedef short (CALLBACK*
UnRegisterClientFuncType)(short);
typedef short (CALLBACK*
CloseIdrisiFuncType)();

Idrapp::Idrapp() {
hinstLib = LoadLibrary("mercur32");
return;

}

Idrapp::~Idrapp() {
if (hinstLib == NULL) return;
BOOL fFreeResult =

FreeLibrary(hinstLib);
return ;

}

short Idrapp::GetProgress(short
ClientId, short ProcID, ProgStruct *
Prog) {

GetProgressFuncType f;
if (hinstLib == NULL) return 0;

f = (GetProgressFuncType)
GetProcAddress(hinstLib,
"GetProgress");

if (!f) return 0;
return f(ClientId, ProcID, Prog);

}

project x 1 westboro spc27ma1 testwb
us27tm19 279078 290565.3 4678095
4686651 614 486 0 1

#include <windows.h>
#include <iostream.h>
#include "idrapp.h"

Idrapp i;

void main() {

ProgStruct Prog;
short result, ClientId, ProcId;
short PtHinst = 0;
short show = SHOW_IDRISI_MINIMIZED;
short mon = MONITOR_FROM_IDRISI;

char *dir =
"c:\\0home\\test\\idr_vc\\";

char *module = "project";
char *opt = "1 westboro spc27ma1

testwb us27tm19 279078 290565.3
4678095 4686651 614 486 0 1";

char *title = "";
char *units = "";

if (! i.IsIdrisiPresent())
result = i.LaunchIdrisi(show);

i.SetDataDirectory(dir);

ClientId = i.RegisterClient();
ProcId = i.LaunchModule(ClientId,

mon, module, opt, title, units,
&PtHinst);

do
{

result = i.GetProgress(ClientId,

Although would be more elegant, is
used to declare enumerations because the API calls
use rather than data types. Also note the
class constructor and destructor; these are used to
load and unload MERCUR32:

The remaining class functions merely provide the
front end to the DLL's exported functions, for
example:

At this point we're ready to develop our first Idrisi
application! Let's write a console app that will:

1) Launch Idrisi if necessary
2) Set the working directory to
"c:\0home\test\idr_vc"
3) Execute a module command, equivalent to the
following macro statement:

enum #define

short int

idrapp.cpp:

test1.cpp:

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

10

ProcId, &Prog);
}
while (Prog.Status ==

PROCSTATUS_ACTIVE);
result =

i.UnRegisterClient(ClientId);
cout << "Done.\n";
return;

}

Note that even though the
option is specified, Idrisi won't run minimized. This
is a known bug that hopefully Clark Labs will fix
when Version 3 comes out in mid-1999. Right now,
I recommend just keeping a copy of Idrisi active
rather than launching it. (Don't forget that you can
also add custom commands to Idrisi's menu!)

As you build more advanced applications, you're
going to want to take advantage of error reporting,
progress reporting (to Idrisi), image/vector
documentation, and other functions available in the
API. All of these functions are described in the
documentation.

One thing to watch out for in monitoring progress is
that ProgStruct values to be supplied to SetProgress
are not necessarily the same as those returned by
GetProgress . For example, for

GetProgress populates
PercentDone with 0.0-100.0 while SetProgress
requires 0.0-1.0. (For ,
returned values of PassNum and PercentDone are
even more bizarre.) The following code is an
example of reading the progress of a module and
then supplying it to Idrisi.

Warning messages, such as
those issued by BMPIDRIS and SURFACE,
currently cannot be disabled in the API. Attempts to
circumvent this by monitoring from the client will
lead to "exception eedfadeH" in MERCUR32.DLL if
GetProgress is called after LaunchModule.

Idrisi may think that Clients are still
active, even after unregistering them.

SHOW_IDRISI_MINIMIZED

REPORT_TYPE_PERCENTDONE

REPORT_TYPE_COMPLEXPASS

Progress Reporting

Other Caveats

3

result = i.GetProgress(ClientId,
ProcId, &Prog);
Prog2.Status = Prog.Status;
Prog2.ReportType = Prog.ReportType;
switch (Prog.ReportType)
{
case REPORT_TYPE_WORKING:

Prog2.PassNum = 1;
Prog2.TotalPasses = 1;
Prog2.PercentDone = 0.0;
break;

case REPORT_TYPE_PERCENTDONE:
Prog2.PassNum = 1;
Prog2.TotalPasses = 1;
Prog2.PercentDone =

Prog.PercentDone / 100;
if (Prog2.PercentDone < 0.0)

Prog2.PercentDone = 0.0;
if (Prog2.PercentDone > 1.0)

Prog2.PercentDone = 1.0;
break;

case REPORT_TYPE_PASS_X_OF_N:
Prog2.PassNum = Prog.PassNum;
if (Prog2.PassNum < 0)

Prog2.PassNum = 0;
Prog2.TotalPasses =

Prog.TotalPasses;
Prog2.PercentDone = 0.0;
break;

case REPORT_TYPE_PASS_TOTALUNKNOWN:
Prog2.PassNum = Prog.PassNum;
if (Prog2.PassNum < 0)

Prog2.PassNum = 0;
Prog2.TotalPasses = 0;
Prog2.PercentDone = 0.0;
break;

case REPORT_TYPE_COMPLEXPASS:
calc = (float)(Prog.PassNum - 2080)

/ 100;
Prog2.PassNum = (short) calc + 1;
Prog2.TotalPasses =

Prog.TotalPasses;
if (Prog2.PassNum >

Prog2.TotalPasses)
Prog2.PassNum =

Prog2.TotalPasses;
calc = -207900 - Prog.PercentDone;
calc = calc - ((Prog2.PassNum - 1)

* 9900);
Prog2.PercentDone = calc / 99.0f;
if (Prog2.PercentDone < 0.0)

Prog2.PercentDone = 0.0;
if (Prog2.PercentDone > 100.0)

Prog2.PercentDone = 100.0;
break;

}
result2 = i.SetProgress(ClientId2,
StatId, &Prog2);

Warning Messages:

CloseIdrisi:

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

11

Accessing Idrisi's API from ArcView

Conclusion

Although the MERCUR32 DLLProcs are accessible
from ArcView, Avenue cannot manipulate data
structures such as ProgStruct. For example, it is not
possible to use the SetProgress DLLProc. However,
in situations where retrieving extended data is not
essential (such as GetProgress), a phony buffer
string may be used instead:

Idrisi's API, while it does have its quirks and bugs, is
well worth learning. The ability to develop custom
procedures and algorithms is an important feature of
any GIS, and Clark Labs has demonstrated their
commitment to this. Hopefully, with the release of
Version 3.0, the problems currently encountered will
be eliminated.

See p. 15.
A complete version of the Idrapp class is available

for download at:
www.primenet.com/~piersen/idrisi/idrisi.htm
Thanks to Stewart Dibbs of VYSOR Integration,

Inc. (www.vysor.com) for his investigations of the
bugs and quirks in Idrisi's API.

Idrisi.Go:

ModName = SELF.Get(0)
Cmdln = SELF.Get(1)
OutTitle = SELF.Get(2)
OutUnits = SELF.Get(3)
theDLL =
DLL.Make("c:\windows\system\mercur32.d
ll".AsFilename)

'register client
RegisterClient = DLLProc.Make(theDLL,
"RegisterClient",
#DLLPROC_TYPE_INT16,{})
theCID = RegisterClient.Call({})
if (theCID = 0) then

IsIdrisiPresent = nil
RegisterClient = nil

av.PurgeObjects
return "Could not register client"

end

launch the process
LaunchModule =
DLLProc.Make(theDLL,"LaunchModule",#DL
LPROC_TYPE_INT16,
{#DLLPROC_TYPE_INT16,
#DLLPROC_TYPE_INT16,
#DLLPROC_TYPE_STR, #DLLPROC_TYPE_STR,
#DLLPROC_TYPE_STR, #DLLPROC_TYPE_STR,
#DLLPROC_TYPE_PINT16})
MonOp = 1
thePint = 0
parm_list = {theCID, MonOp, ModName,
Cmdln, OutTitle, OutUnits, thePint}
thePID = LaunchModule.Call(parm_list)

'wait until done
Msg = "OK"
dummy_P = String.MakeBuffer(1088)
GetProgress =
DLLProc.Make(theDLL,"GetProgress",
#DLLPROC_TYPE_INT16,
{#DLLPROC_TYPE_INT16,
#DLLPROC_TYPE_INT16,

#DLLPROC_TYPE_STR})
status = GetProgress.Call({theCID,
thePID, dummy_P})
while (status = 1)

status = GetProgress.Call({theCID,
thePID, dummy_P})
end
if (status = 3) then

Msg = "Process terminated with
error"
end

'unregister client and clean up
UnRegisterClient = LLProc.Make(theDLL,
"UnRegisterClient",
#DLLPROC_TYPE_INT16,
{#DLLPROC_TYPE_INT16})
result =
UnRegisterClient.Call({theCID})
if (result = 0) then

if (Msg = "OK") then
Msg = "Could not unregister

client"
else

Msg = Msg + NL + "Could not
unregister client"

end
end
RegisterClient = nil
UnRegisterClient = nil
LaunchModule = nil
GetProgress = nil
theDLL = nil
av.PurgeObjects
return Msg

theDLL = nil

'

1

2

3

PLP

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

12

Supporting Custom Image Formats
in ArcView 3.1

With the introduction of the ImgDLL class in
ArcView 3.1, it is now possible for developers to
add support for any image format. Two components
are necessary:

Three functions are required:

1) int IsValidFile(path) Returns TRUE if the input
path name points to a valid image file. FALSE is
returned otherwise.

2) int QueryImageInfo(path, nbands, width, height,
MBR) Queries the input image defined by path for
the number of bands, image width in pixels, image
height in pixels and the geo-referenced Minimum
Bounding Rectangle (MBR). The MBR is expressed
as left, top, right, and bottom. TRUE is returned on
success, FALSE is returned otherwise.

3) int GetImage(path, out_path, clip_MBR,
out_width, out_height) Extracts an image from path
into the temporary image out_path in the output
format defined when the format is registered with
ImgDLL with the RegisterFormat class request. The
output format must be either a BIL, BIP, or BSQ
image. The clip_MBR is the extent needed from the
image in map coordinates. The out_width and
out_height is the needed size for the temporary
output image in pixels. The MBR is expressed as
left, top, right, and bottom. TRUE is returned on
success, FALSE on error.

To load an image theme, the following events take
place:

1) As the theme browser scans the current directory,
ArcView passes the path of each file with a
registered extension to the DLL to check if it's valid.
If the returned value is true, the file is added to the
image theme list; otherwise, it's skipped.

2) When the theme is loaded, ArcView queries the
DLL for the image bounds and other attributes.

3) When the theme is first made visible, ArcView
initializes the necessary file handles by sending a
request for a zero row/column image. Then, a
second request is made for the desired image, which
is subsequently displayed in the view. Temporary
image files are stored in the $TEMP directory.

Because the basic Idrisi image format is simple, it
makes a good example of developing a custom
image extension. In coding the DLL routines, I
chose to take an object-oriented approach:

height);
}

· A DLL that ArcView can call to retrieve image
info and data.

· An AVX file that registers the image format with
ArcView and points to the DLL

avidris.cpp:

#include <windows.h>
#include "idrimg.h"

int IsValidFile(char * path);
int QueryImageInfo(char * path, long *
nbands, long * width, long * height,
double * mbr);
int GetImage(char * path, char *
out_path, double * clip_mbr, long
out_width, long out_height);

int IsValidFile(char * path)
{

Idrimg theImg(path);
return theImg.IsValid();

}

int QueryImageInfo(char * path, long *
nbands, long * width, long * height,
double * mbr)
{

Idrimg theImg(path);
return theImg.Query(nbands, width,

height, mbr);
}

int GetImage(char * path, char *
out_path, double * clip_mbr, long
out_width, long out_height)
{

Idrimg theImg(path);
return theImg.WriteBIP(out_path,

clip_mbr, out_width, out_

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

13

/

This code can easily be adopted to any class name
that you care to make. The advantages are obvious:

1) You can revise and improve your class and its
member functions without having to rewrite the
front end.

2) If a particular image class already exists, you can
derive a new class from it that incorporates the
necessary functions.

The following file is used to define the exports:

The Idrimg class declaration is as follows:

Rather than list out the (somewhat lengthy) source
code for the class member functions, I will discuss
the basic approaches that were taken, since
approaches may vary with different image formats .
The output image is always 1-band, 8-bit BIP
format , which by default is displayed in ArcView as
gray scale. If a color palette (.SMP or .PAL) file is
present with the same name as the image, a
corresponding colormap file is written for the output
image. Integer and real image values are scaled to
0-255 or to the autoscale values in the .SMP file (this
is consistent with Idrisi's Display Launcher).
A different approach may be preferable depending
on the image type; for example, 24-bit images could
be written as a 3-band, 8-bit BIP. This is the case
with the Mr. SID extension.

1) See if the .IMG and .DOC files exist.

2) Read the pertinent data from the .DOC file into
class attributes.

* This function is optional
int QueryBandStats(char * path, long
band, double * stats)
{

Idrimg theImg(path);
return theImg.BandStat(band,stats);

}
*/

LIBRARY AVIDRIS
DESCRIPTION "Adds Idrisi image support
to ArcView"
EXPORTS

IsValidFile
QueryImageInfo
GetImage

typedef enum {
IMG_NODTYPE = 0,
IMG_BYTE = 1,
IMG_INTEGER = 2,
IMG_REAL = 3,

} IMGDataType;
typedef enum {

IMG_NOFTYPE = 0,
IMG_ASCII = 1,
IMG_BINARY = 2,
IMG_PACKED = 3,

} IMGFileType;
typedef enum {

IMG_NOPALETTE = 0,
IMG_SMP = 1,
IMG_PAL = 2,

} IMGPaletteType;

class Idrimg
{
protected:

char Path[_MAX_PATH];
int Valid;
IMGDataType DataType;
IMGFileType FileType;
long Rows;
long Cols;
double MinX;
double MinY;
double MaxX;
double MaxY;
double MinVal;
double MaxVal;
IMGPaletteType Palette;

public:
Idrimg(char * img_path); //

constructor
int IsValid();
int Query(long * nbands, long *

width, long * height, double * mbr);
int WriteBIP(char * out_path,

double * clip_mbr, long out_width,
long out_height);

/* This function is optional
int BandStat(long band, double *

stats);
*/
};

avidris.def:

idrimg.h:

1

2

Constructor:

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

14

3) See if a corresponding .SMP or .PAL file exists.

Return the Valid attribute.

Assign 1 to nbands, the Cols attribute to width; the
Rows attribute to height; and the MinX, MaxY,
MaxX, and MinY attributes to mbr[].

1) Determine image parameters. If ArcView is
initializing the image or the clip_mbr is completely
outside, set degenerate image parameters (equal to
pixel 0,0). If ArcView is requesting a smaller pixel
size than the input image, adjust the parameters to
use actual size pixels; this reduces write operations .

2) Allocate memory for I/O buffers and open the
input/output files.

3) Write the header file.

4) If a palette exists, read it, write the corresponding
colormap file, and set the scaling parameters.

5) For each cell of the output BIP, find the nearest
neighboring cell value of the input image. If the
image data format is integer or real, scale the value
appropriately using the MinVal and MaxVal
attributes.

Uncompressed Idrisi images are basically lists of
, , or values. In this case,

the simplest approach is to calculate where the file
pointer should go for each row and read in the
number of values needed to resample to the output
row. With compressed images, a different approach
is necessary: the image must be read from the
beginning until the start value is reached, and must
continue to be read until the end value is reached.
Fortunately, a well-compressed image can be read in
more quickly, and will often display faster in
ArcView than the uncompressed counterpart.

The BIL/BIP/BSQ format is very easy to write.
ArcView's online help gives the specification (see
"extended image formats" in the index).

One problem in debugging the DLL is finding out
how it's being used. For that reason, it can be useful
to trap parameters that are being passed to it by
ArcView. The following code in WriteBIP creates a
log file for the temporary image:

Other variables may be reported as well.

Once the DLL is ready to use or test with ArcView,
the extension's AVX file must be created. The online
help gives the sample code for the necessary scripts,
which were only modified slightly for the AVIdris
extension:

IsValid:

Query:

WriteBIP:

unsigned char short float

3

Debugging

The Extension

// Debugging variables

bool debug = true;
char log_path[_MAX_PATH];
FILE *out_log;

if (debug)
{

strcpy(log_path,out_path);
epos = strrchr(log_path, '.') -

log_path + 1;
strncpy(log_path + epos, "log",

3);
success = (! ((out_log =

fopen(log_path,"w")) == NULL));
if (! success) return false;
fprintf(out_log,"Path =

'%s'\n",Path);
fprintf(out_log,"out_path =

'%s'\n",out_path);
fprintf(out_log,"clip_mbr[0] =

'%f'\n",clip_mbr[0]);
fprintf(out_log,"clip_mbr[1] =

'%f'\n",clip_mbr[1]);
fprintf(out_log,"clip_mbr[2] =

'%f'\n",clip_mbr[2]);
fprintf(out_log,"clip_mbr[3] =

'%f'\n",clip_mbr[3]);
fprintf(out_log,"out_width =

'%i'\n",out_width);
fprintf(out_log,"out_height =

'%i'\n",out_height);
}

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

15

The Clark Labs web site is located at:

Those interested in finding out more about Idrisi and
other Clark Labs products may go directly to:

Under the Idrisi product description is a complete,
detailed list of commands. Especially check out the
wide variety of image processing commands that are
available (the table on p. 3 doesn’t really do it
justice!).

Existing Idrisi users may download the latest service
packs and the API at:

Also at that site is a double-to-single precision
database conversion utility, suitable for use with
shapefiles.

Evaluation copies of Idrisi and CartaLinx are also
available at that site.

http://www.clarklabs.org/

http://www.clarklabs.org/03prod/03prod.htm

http://www.clarklabs.org/13dnlds/13dnlds.htm

IdrImg.MakeExt:

IdrImg.Load:

IdrImg.CanUnload:

IdrImg.Unload:

theExt =
Extension.Make("$HOME\avidris.avx".AsF
ileName, "Idrisi Image Support", NIL,
NIL, {})
theExt.SetAbout("Extends ArcView to
support Idrisi images (v1.0).")
theExt.SetExtVersion(1.0)
theExt.SetCanUnloadScript(av.FindScrip
t("IdrImg.CanUnload"))
theExt.SetLoadScript(av.FindScript("Id
rImg.Load"))
theExt.SetUnloadScript(av.FindScript("
IdrImg.Unload"))
theExt.Commit

ImgDll.RegisterFormat("$AVBIN\avidris.
dll".AsFileName, “img", "bip")

av.PurgeObjects
if (ImgDll.GetFormatUseCount("img") =
0) then

return(TRUE)
end
return(FALSE)

ImgDll.UnregisterFormat("img")

Once the scripts are created and compiled, running
"IdrImg.MakeExt" will generate the AVX file.

Have fun!

The source code, included in the AVIdris extension,
may be downloaded at the following address:
www.primenet.com/~piersen/arcview/upload/view/a
vidris.htm
Indeed, binary byte or integer .IMG files are

identical to single-band BIP or BIL files, and could
be displayed directly in ArcView if they were
renamed and appropriate header/colormap files
created.
Thanks to Kenneth McVay for that tip.

1

2

3

PLP

PLP

PLP Online

http://www.primenet.com/~piersen/PLP

User Name: plpv7n2

Password: m5ox7ru5

Clark Labs

A Technical Friend for ARC / INFO Users®

Volume 7 Number 2

Point Line Poly

16

Pulling Items

This routine, to be executed at the ARC/W prompt,
is convenient for users who are tired of typing in the
internal items for coverage attribute tables in
PULLITEM. Not only are the internal items
automatically added, but the remaining items in the
table are listed out as a reminder!

Use COMPSML PULLIT N to create the SML file.
Note that the routine creates a temporary SML that is
executed within PULLITEM. After the internal
items are added and the remaining items typed out,
the SML stops execution and it is up to the user to
complete the PULLITEM dialog.

pullit.r:

&routine pullit

&define file -11 &var
&define wksp -12 &var
&if &eq "x%-1" "x" &do

&delim < >
&type "Usage: &r pullit [in_file]"
&delim []
&return

&end
&if &ninfo %-1 &do

&type "%-1 is not a table."
&return

&end
&value -11 -1
&value -12 WKSP
&openw [wksp]t$it.lis
ITEMS [file] NONE LIST
&closew
&open [wksp]t$it.lis error
&openw [wksp]t$pull.sml
&sv -2 .TRUE.
&while &do

&read -1 [break]
&if &eq %-2 .TRUE. &do

&write "%-1"
&else

&write "&type ""%-1"" "
&end
&value -3 -1 %<len %-1 - 2 > %<len

%-1>
&value -4 -1 %<len %-1 - 1 > %<len

%-1>
&if &eq "%-3" "_ID" &or &eq "%-4"

"_I" &do
&if &eq %-2 .TRUE. &do

&sv -2 .FALSE.
&write "&type ""Internal

items added."" "
&write "&type ""Remaining

items:"" "

&end
&end

&end
&closew
&close
& DEL [wksp]t$it.lis
PULLITEMS [file] [file]
[wksp]t$pull.sml
& DEL [wksp]t$pull.sml
&return

&label error
&type "I/O error"

(C:\0HOME\TEST\PLP)[ARC]&r pullit
Usage: &r pullit [in_file]
(C:\0HOME\TEST\PLP)[ARC]&r pullit
topo.aat
[PC ARC/INFO 3.5.1 PULLITEM -
01/24/97]
Pulling items from topo.aat to create
topo.aat.

PULLITEM Ver 3.5.1
Copyright (C) 1996 by
Environmental Systems Research

Institute
380 New York Street
Redlands, CA 92373

All Rights Reserved Worldwide.

Internal items added.
Remaining items:
DXF_LAYER
DXF_COLOR
DXF_THICKN
DXF_TYPE
DXF_ELEVAT
DXF_CURVE
ELEV
Enter the 8th item:

PLP

